Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_1_a5, author = {T. A. Suslina}, title = {Homogenization in {Sobolev} class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms}, journal = {Algebra i analiz}, pages = {108--222}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/} }
TY - JOUR AU - T. A. Suslina TI - Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms JO - Algebra i analiz PY - 2010 SP - 108 EP - 222 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/ LA - ru ID - AA_2010_22_1_a5 ER -
%0 Journal Article %A T. A. Suslina %T Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms %J Algebra i analiz %D 2010 %P 108-222 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/ %G ru %F AA_2010_22_1_a5
T. A. Suslina. Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms. Algebra i analiz, Tome 22 (2010) no. 1, pp. 108-222. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/
[1] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. C., Amsterdam–New York, 1978 | MR | Zbl
[2] Birman M. Sh., Suslina T. A., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl
[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR
[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl
[7] Borisov D. I., “Asimptotiki reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42 | MR
[8] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl
[9] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[12] Suslina T. A., “Homogenization of periodic second order differential operators including first order terms”, Amer. Math. Soc. Transl. (2), 225, Amer. Math. Soc., Providence, RI, 2008, 227–252 | MR | Zbl