Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms
Algebra i analiz, Tome 22 (2010) no. 1, pp. 108-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

Matrix periodic elliptic second order differential operators ${\mathcal B}_{\varepsilon}$ in $\mathbb{R}^d$ with rapidly oscillating coefficients (depending on $\mathbf{x}/\varepsilon$) are studied. The principal part of the operator is given in a factorized form $b(\mathbf{D})^* g(\varepsilon^{-1}\mathbf{x})b(\mathbf{D})$, where $g$ is a periodic, bounded and positive definite matrix-valued function and $b(\mathbf{D})$ is a matrix first order operator whose symbol is a matrix of maximal rank. The operator also has zero and first order terms with unbounded coefficients. The problem of homogenization in the small period limit is considered. Approximation for the generalized resolvent of the operator ${\mathcal B}_\varepsilon$ is obtained in the operator norm in $L_2(\mathbb{R}^d;\mathbb{C}^n)$ with error term $O(\varepsilon)$. Also, approximation for this resolvent is obtained in the norm of operators acting from $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to with error term of order and with the corrector taken into account. The general results are applied to homogenization problems for the Schrödinger operator and the two-dimensional Pauli operator with potentials involving singular terms.
@article{AA_2010_22_1_a5,
     author = {T. A. Suslina},
     title = {Homogenization in {Sobolev} class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms},
     journal = {Algebra i analiz},
     pages = {108--222},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms
JO  - Algebra i analiz
PY  - 2010
SP  - 108
EP  - 222
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/
LA  - ru
ID  - AA_2010_22_1_a5
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms
%J Algebra i analiz
%D 2010
%P 108-222
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/
%G ru
%F AA_2010_22_1_a5
T. A. Suslina. Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms. Algebra i analiz, Tome 22 (2010) no. 1, pp. 108-222. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a5/

[1] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. C., Amsterdam–New York, 1978 | MR | Zbl

[2] Birman M. Sh., Suslina T. A., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[7] Borisov D. I., “Asimptotiki reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42 | MR

[8] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[9] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[12] Suslina T. A., “Homogenization of periodic second order differential operators including first order terms”, Amer. Math. Soc. Transl. (2), 225, Amer. Math. Soc., Providence, RI, 2008, 227–252 | MR | Zbl