A class of topographical waveguides
Algebra i analiz, Tome 22 (2010) no. 1, pp. 98-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of some infinite domains, it is shown that the spectrum of the elasticity theory operator is not purely continuous. This implies the existence of a new class of the so-called topographical waveguides.
@article{AA_2010_22_1_a4,
     author = {V. M. Babich},
     title = {A class of topographical waveguides},
     journal = {Algebra i analiz},
     pages = {98--107},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - A class of topographical waveguides
JO  - Algebra i analiz
PY  - 2010
SP  - 98
EP  - 107
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/
LA  - ru
ID  - AA_2010_22_1_a4
ER  - 
%0 Journal Article
%A V. M. Babich
%T A class of topographical waveguides
%J Algebra i analiz
%D 2010
%P 98-107
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/
%G ru
%F AA_2010_22_1_a4
V. M. Babich. A class of topographical waveguides. Algebra i analiz, Tome 22 (2010) no. 1, pp. 98-107. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/

[1] Bonnet-Ben Dhia A. S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models Methods Appl. Sci., 9:5 (1999), 755–798 | DOI | MR | Zbl

[2] Maradudin A. A. et al., “Variational edge modes in finite crystals”, Phys. Rev. B, 6 (1972), 1106–1111 | DOI

[3] Lagasse P. E., “Analysis of dispersion-free guides for elastic waves”, Electron Lett., 8:15 (1972), 372–373 | DOI

[4] Krylov V. V., “Geometro-akusticheskii podkhod k opisaniyu lokalizovannykh mod kolebanii uprugogo tverdogo klina”, Zh. tekhn. fiz., 60:2 (1990), 1–7

[5] Shanin A. V., “Vozbuzhdenie i rasseyanie klinovoi volny v uprugom kline s uglom raskryva, blizkim k $180^\circ$”, Akust. zh., 43:3 (1997), 402–408

[6] Kamotskii I. V., “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR