Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_1_a4, author = {V. M. Babich}, title = {A class of topographical waveguides}, journal = {Algebra i analiz}, pages = {98--107}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/} }
V. M. Babich. A class of topographical waveguides. Algebra i analiz, Tome 22 (2010) no. 1, pp. 98-107. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/
[1] Bonnet-Ben Dhia A. S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models Methods Appl. Sci., 9:5 (1999), 755–798 | DOI | MR | Zbl
[2] Maradudin A. A. et al., “Variational edge modes in finite crystals”, Phys. Rev. B, 6 (1972), 1106–1111 | DOI
[3] Lagasse P. E., “Analysis of dispersion-free guides for elastic waves”, Electron Lett., 8:15 (1972), 372–373 | DOI
[4] Krylov V. V., “Geometro-akusticheskii podkhod k opisaniyu lokalizovannykh mod kolebanii uprugogo tverdogo klina”, Zh. tekhn. fiz., 60:2 (1990), 1–7
[5] Shanin A. V., “Vozbuzhdenie i rasseyanie klinovoi volny v uprugom kline s uglom raskryva, blizkim k $180^\circ$”, Akust. zh., 43:3 (1997), 402–408
[6] Kamotskii I. V., “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR