A class of topographical waveguides
Algebra i analiz, Tome 22 (2010) no. 1, pp. 98-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of some infinite domains, it is shown that the spectrum of the elasticity theory operator is not purely continuous. This implies the existence of a new class of the so-called topographical waveguides.
@article{AA_2010_22_1_a4,
     author = {V. M. Babich},
     title = {A class of topographical waveguides},
     journal = {Algebra i analiz},
     pages = {98--107},
     year = {2010},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - A class of topographical waveguides
JO  - Algebra i analiz
PY  - 2010
SP  - 98
EP  - 107
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/
LA  - ru
ID  - AA_2010_22_1_a4
ER  - 
%0 Journal Article
%A V. M. Babich
%T A class of topographical waveguides
%J Algebra i analiz
%D 2010
%P 98-107
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/
%G ru
%F AA_2010_22_1_a4
V. M. Babich. A class of topographical waveguides. Algebra i analiz, Tome 22 (2010) no. 1, pp. 98-107. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a4/

[1] Bonnet-Ben Dhia A. S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models Methods Appl. Sci., 9:5 (1999), 755–798 | DOI | MR | Zbl

[2] Maradudin A. A. et al., “Variational edge modes in finite crystals”, Phys. Rev. B, 6 (1972), 1106–1111 | DOI

[3] Lagasse P. E., “Analysis of dispersion-free guides for elastic waves”, Electron Lett., 8:15 (1972), 372–373 | DOI

[4] Krylov V. V., “Geometro-akusticheskii podkhod k opisaniyu lokalizovannykh mod kolebanii uprugogo tverdogo klina”, Zh. tekhn. fiz., 60:2 (1990), 1–7

[5] Shanin A. V., “Vozbuzhdenie i rasseyanie klinovoi volny v uprugom kline s uglom raskryva, blizkim k $180^\circ$”, Akust. zh., 43:3 (1997), 402–408

[6] Kamotskii I. V., “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR