The power law for the Buffon needle probability of the four-corner Cantor set
Algebra i analiz, Tome 22 (2010) no. 1, pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal C_n$ be the $n$th generation in the construction of the middle-half Cantor set. The Cartesian square $\mathcal K_n$ of $\mathcal C_n$ consists of $4^n$ squares of side-length $4^{-n}$. The chance that a long needle thrown at random in the unit square will meet $\mathcal K_n$ is essentially the average length of the projections of $\mathcal K_n$, also known as the Favard length of $\mathcal K_n$. A classical theorem of Besicovitch implies that the Favard length of $\mathcal K_n$ tends to zero. It is still an open problem to determine its exact rate of decay. Until recently, the only explicit upper bound was $\exp(-c\log_*n)$, due to Peres and Solomyak ($\log_*n$ is the number of times one needs to take log to obtain a number less than 1 starting from $n$). In the paper, a power law bound is obtained by combining analytic and combinatorial ideas.
Keywords: Favard length, four-corner Cantor set, Buffon's needle.
@article{AA_2010_22_1_a3,
     author = {F. Nazarov and Y. Peres and A. Volberg},
     title = {The power law for the {Buffon} needle probability of the four-corner {Cantor} set},
     journal = {Algebra i analiz},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/}
}
TY  - JOUR
AU  - F. Nazarov
AU  - Y. Peres
AU  - A. Volberg
TI  - The power law for the Buffon needle probability of the four-corner Cantor set
JO  - Algebra i analiz
PY  - 2010
SP  - 82
EP  - 97
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/
LA  - en
ID  - AA_2010_22_1_a3
ER  - 
%0 Journal Article
%A F. Nazarov
%A Y. Peres
%A A. Volberg
%T The power law for the Buffon needle probability of the four-corner Cantor set
%J Algebra i analiz
%D 2010
%P 82-97
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/
%G en
%F AA_2010_22_1_a3
F. Nazarov; Y. Peres; A. Volberg. The power law for the Buffon needle probability of the four-corner Cantor set. Algebra i analiz, Tome 22 (2010) no. 1, pp. 82-97. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/

[1] Besicovitch A. S., “Tangential properties of sets and arcs of infinite linear measure”, Bull. Amer. Math. Soc., 66 (1960), 353–359 | DOI | MR | Zbl

[2] David G., “Analytic capacity, Calderón–Zygmund operators, and rectifiability”, Publ. Mat., 43 (1999), 3–25 | MR | Zbl

[3] Falconer K. J., The geometry of fractal sets, Cambridge Tracts in Math., 85, Cambridge Univ. Press, Cambridge, 1986 | MR

[4] Jones P. W., Murai T., “Positive analytic capacity but zero Buffon needle probability”, Pacific J. Math., 133 (1988), 99–114 | MR | Zbl

[5] Kenyon R., “Projecting the one-dimensional Sierpinski gasket”, Israel J. Math., 97 (1997), 221–238 | DOI | MR | Zbl

[6] Lagarias J. C., Wang Y., “Tiling the line with translates of one tile”, Invent. Math., 124 (1996), 341–365 | DOI | MR | Zbl

[7] Mateu J., Tolsa X., Verdera J., “The planar Cantor sets of zero analytic capacity and the local $T(b)$-theorem”, J. Amer. Math. Soc., 16 (2003), 19–28 | DOI | MR | Zbl

[8] Mattila P., “Orthogonal projections, Riesz capacities, and Minkowski content”, Indiana Univ. Math. J., 39 (1990), 185–198 | DOI | MR | Zbl

[9] Peres Y., Simon K., Solomyak B., “Self-similar sets of zero Hausdorff measure and positive packing measure”, Israel J. Math., 117 (2000), 353–379 | DOI | MR | Zbl

[10] Peres Y., Solomyak B., “How likely is Buffon's needle to fall near a planar Cantor set?”, Pacific J. Math., 204 (2002), 473–496 | DOI | MR | Zbl

[11] Tao T., A quantitative version of the Besicovitch projection theorem via multiscale analysis, , 28 pp. arXiv:0706.2646v1[math.CA] | MR