Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_1_a3, author = {F. Nazarov and Y. Peres and A. Volberg}, title = {The power law for the {Buffon} needle probability of the four-corner {Cantor} set}, journal = {Algebra i analiz}, pages = {82--97}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/} }
TY - JOUR AU - F. Nazarov AU - Y. Peres AU - A. Volberg TI - The power law for the Buffon needle probability of the four-corner Cantor set JO - Algebra i analiz PY - 2010 SP - 82 EP - 97 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/ LA - en ID - AA_2010_22_1_a3 ER -
F. Nazarov; Y. Peres; A. Volberg. The power law for the Buffon needle probability of the four-corner Cantor set. Algebra i analiz, Tome 22 (2010) no. 1, pp. 82-97. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a3/
[1] Besicovitch A. S., “Tangential properties of sets and arcs of infinite linear measure”, Bull. Amer. Math. Soc., 66 (1960), 353–359 | DOI | MR | Zbl
[2] David G., “Analytic capacity, Calderón–Zygmund operators, and rectifiability”, Publ. Mat., 43 (1999), 3–25 | MR | Zbl
[3] Falconer K. J., The geometry of fractal sets, Cambridge Tracts in Math., 85, Cambridge Univ. Press, Cambridge, 1986 | MR
[4] Jones P. W., Murai T., “Positive analytic capacity but zero Buffon needle probability”, Pacific J. Math., 133 (1988), 99–114 | MR | Zbl
[5] Kenyon R., “Projecting the one-dimensional Sierpinski gasket”, Israel J. Math., 97 (1997), 221–238 | DOI | MR | Zbl
[6] Lagarias J. C., Wang Y., “Tiling the line with translates of one tile”, Invent. Math., 124 (1996), 341–365 | DOI | MR | Zbl
[7] Mateu J., Tolsa X., Verdera J., “The planar Cantor sets of zero analytic capacity and the local $T(b)$-theorem”, J. Amer. Math. Soc., 16 (2003), 19–28 | DOI | MR | Zbl
[8] Mattila P., “Orthogonal projections, Riesz capacities, and Minkowski content”, Indiana Univ. Math. J., 39 (1990), 185–198 | DOI | MR | Zbl
[9] Peres Y., Simon K., Solomyak B., “Self-similar sets of zero Hausdorff measure and positive packing measure”, Israel J. Math., 117 (2000), 353–379 | DOI | MR | Zbl
[10] Peres Y., Solomyak B., “How likely is Buffon's needle to fall near a planar Cantor set?”, Pacific J. Math., 204 (2002), 473–496 | DOI | MR | Zbl
[11] Tao T., A quantitative version of the Besicovitch projection theorem via multiscale analysis, , 28 pp. arXiv:0706.2646v1[math.CA] | MR