$L^p$-bounded point evaluations for polynomials and uniform rational approximation
Algebra i analiz, Tome 22 (2010) no. 1, pp. 57-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection is established between uniform rational approximation, and approximation in the mean by polynomials on compact nowhere dense subsets of the complex plane $\mathbb C$. Peak points for $R(X)$ and bounded point evaluations for $H^p(X,dA)$, $1\leq p\infty$, play a fundamental role.
Keywords: polynomial and rational approximation, capacity, peak points, point evaluations.
@article{AA_2010_22_1_a1,
     author = {J. E. Brennan and E. R. Militzer},
     title = {$L^p$-bounded point evaluations for polynomials and uniform rational approximation},
     journal = {Algebra i analiz},
     pages = {57--74},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a1/}
}
TY  - JOUR
AU  - J. E. Brennan
AU  - E. R. Militzer
TI  - $L^p$-bounded point evaluations for polynomials and uniform rational approximation
JO  - Algebra i analiz
PY  - 2010
SP  - 57
EP  - 74
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a1/
LA  - en
ID  - AA_2010_22_1_a1
ER  - 
%0 Journal Article
%A J. E. Brennan
%A E. R. Militzer
%T $L^p$-bounded point evaluations for polynomials and uniform rational approximation
%J Algebra i analiz
%D 2010
%P 57-74
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a1/
%G en
%F AA_2010_22_1_a1
J. E. Brennan; E. R. Militzer. $L^p$-bounded point evaluations for polynomials and uniform rational approximation. Algebra i analiz, Tome 22 (2010) no. 1, pp. 57-74. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a1/

[1] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | MR

[2] Aleman A., Richter S., Sundberg C., “Nontangential limits in $P^t(\mu)$-spaces and the index of invariant subspaces”, Ann. of Math. (2), 169:2 (2009), 449–490 | DOI | MR | Zbl

[3] Brennan J. E., “Invariant subspaces and weighted polynomial approximation”, Ark. Mat., 11 (1973), 167–189 | DOI | MR | Zbl

[4] Brennan Dzh., “Teorema Tomsona o polinomialnom priblizhenii v srednem kvadratichnom”, Algebra i analiz, 17:2 (2005), 1–32 ; “Thomson's theorem on mean-square polynomial approximation”, St. Petersburg Math. J., 17:2 (2006), 217–238 | MR | DOI | Zbl

[5] Browder A., Introduction to function algebras, W. A. Benjamin, Inc., New York–Amsterdam, 1969 | MR | Zbl

[6] Falconer K. J., The geometry of fractal sets, Cambridge Tracts in Math., 85, Cambridge Univ. Press, Cambridge, 1986 | MR

[7] Fuglede B., “A simple proof that certain capacities decrease under contraction”, Hiroshima Math. J., 19 (1989), 567–573 | MR | Zbl

[8] Gamelin T. W., Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl

[9] Garnett J. B., “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc., 24 (1970), 696–699 | DOI | MR | Zbl

[10] Garnett J. B., Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl

[11] Hartogs F., Rosenthal A., “Über Folgen analytischer Funktionen”, Math. Ann., 104 (1931), 606–610 | DOI | MR | Zbl

[12] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[13] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 ; Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl | MR | Zbl

[14] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138 | MR | Zbl

[15] Melnikov M. S., “O dolyakh Glisona algebry $R(X)$”, Mat. sb., 101(143):2 (1976), 293–300 | MR | Zbl

[16] Melnikov M. S., Sinanyan S. O., “Voprosy teorii priblizheniya funktsii odnogo kompleksnogo peremennogo”, Itogi nauki i tekhn. Sovrem. probl. mat., 4, VINITI, M., 1975, 143–250 ; “Questions in the theory of approximation of functions of one complex variable”, J. Soviet Math., 5 (1976), 688–752 | MR | Zbl | DOI

[17] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 7:2 (1952), 31–122 ; “Uniform approximations of functions of a complex variable”, Amer. Math. Soc. Transl., 101, Amer. Math. Soc., Providence, RI, 1954, 294–391 | MR | Zbl | MR

[18] Roth A., “Approximationseigenschaften und Strahlengrenzwerte meromorpher und ganzer Funktionen”, Comment. Math. Helv., 11 (1938), 77–125 | DOI | MR | Zbl

[19] Sinanyan S. O., “Svoistvo edinstvennosti analiticheskikh funktsii na zamknutykh mnozhestvakh bez vnutrennikh tochek”, Sib. mat. zh., 6:6 (1965), 1365–1381 | Zbl

[20] Sinanyan S. O., “Approksimatsiya analiticheskimi funktsiyami i polinomami v srednem na ploschadi”, Mat. sb., 69:4 (1966), 546–578 ; “Approximation by polynomials and analytic functions in the mean with respect to the area”, Amer. Math. Soc. Transl. (2), 74, Amer. Math. Soc., Providence, RI, 1968, 91–124 | Zbl

[21] Thomson J. E., “Approximation in the mean by polynomials”, Ann. of Math. (2), 133 (1991), 477–507 | DOI | MR | Zbl

[22] Tolsa X., “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190 (2003), 105–149 | DOI | MR | Zbl

[23] Trent T., “Sufficient conditions for bounded point evaluations”, Integral Equations Operator Theory, 13 (1990), 593–606 | DOI | MR | Zbl

[24] Vitushkin A. G., “Primer mnozhestva polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, Dokl. AN SSSR, 127:2 (1959), 246–249 | Zbl

[25] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi mat. nauk, 22:6 (1967), 141–199 | MR | Zbl

[26] Wermer J., “Report on subnormal operators”, Report of an International Conference on Operator Theory and Group Representations (Arden House, Harriman, NY, 1955), Nat. Acad. Sci.-Nat. Res. Council, Washington, D.C., 1955, Publ. No 387, 1–3 | MR

[27] Zalcman L., Analytic capacity and rational approximation, Lecture Notes in Math., 50, Springer, Berlin, 1968 | MR