Approximation of discrete functions and size of spectrum
Algebra i analiz, Tome 21 (2009) no. 6, pp. 227-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda\subset\mathbb R$ be a uniformly discrete sequence and $S\subset\mathbb R$ a compact set. It is proved that if there exists a bounded sequence of functions in the Paley–Wiener space $PW_S$ that approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then the measure of $S$ cannot be less than $2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. A similar estimate holds true when the norms of approximating functions have a moderate growth; the corresponding sharp growth restriction is found.
Keywords: Paley–Wiener space, Bernstein space, set of interpolation, approximation of discrete functions.
@article{AA_2009_21_6_a7,
     author = {A. Olevskiǐ and A. Ulanovskiǐ},
     title = {Approximation of discrete functions and size of spectrum},
     journal = {Algebra i analiz},
     pages = {227--240},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a7/}
}
TY  - JOUR
AU  - A. Olevskiǐ
AU  - A. Ulanovskiǐ
TI  - Approximation of discrete functions and size of spectrum
JO  - Algebra i analiz
PY  - 2009
SP  - 227
EP  - 240
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_6_a7/
LA  - en
ID  - AA_2009_21_6_a7
ER  - 
%0 Journal Article
%A A. Olevskiǐ
%A A. Ulanovskiǐ
%T Approximation of discrete functions and size of spectrum
%J Algebra i analiz
%D 2009
%P 227-240
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_6_a7/
%G en
%F AA_2009_21_6_a7
A. Olevskiǐ; A. Ulanovskiǐ. Approximation of discrete functions and size of spectrum. Algebra i analiz, Tome 21 (2009) no. 6, pp. 227-240. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a7/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Beurling A., “Balayage of Fourier–Stiltjes transforms”, The collected works of Arne Beurling. Vol. 2. Harmonic analysis, Contemporary Mathematicians, Birkhäuser Boston Inc., Boston, MA, 1989, 341–350 | MR

[3] Beurling A., “Interpolation for an interval in $\mathbb R^1$”, The collected works of Arne Beurling. Vol. 2. Harmonic analysis, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989, 351–365 | MR

[4] Horn R. A., Johnson C. R., Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[5] Ivashev-Musatov O. C., “$M$-mnozhestva i $h$-mery”, Mat. zametki, 3:4 (1968), 441–447 | MR | Zbl

[6] Ivashev-Musatov O. C., “O koeffitsientakh trigonometricheskikh nul-ryadov”, Izv. AN SSSR. Ser. mat., 21:4 (1957), 559–578 | MR | Zbl

[7] Kahane J.-P., “Sur les fonctions moyenne-périodiques bornées”, Ann. Inst. Fourier (Grenoble), 7 (1957), 293–314 | MR | Zbl

[8] Kolmogorov A. N., Petrov A. A., Smirnov Yu. M., “Odna formula Gaussa iz teorii metoda naimenshikh kvadratov”, Izv. AN SSSR. Ser. mat., 11:6 (1947), 561–566 | MR | Zbl

[9] Landau H. J., “Necessary density conditions for sampling and interpolation of certain entire functions”, Acta Math., 117 (1967), 37–52 | DOI | MR | Zbl

[10] Olevskii A., Ulanovskii A., “Interpolation by functions with small spectra”, C. R. Math. Acad. Sci. Paris, 345:5 (2007), 261–264 | MR | Zbl

[11] Olevskii A., Ulanovskii A., “Interpolation in Bernstein and Paley–Wiener spaces”, J. Funct. Anal., 256 (2009), 3257–3278 | DOI | MR | Zbl

[12] Young R. M., An introduction to nonharmonic Fourier series, Academic Press, Inc., San Diego, CA, 2001 | MR