Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_5_a7, author = {S. A. Nazarov}, title = {The {Eshelby} theorem and the problem on optimal patch}, journal = {Algebra i analiz}, pages = {155--195}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a7/} }
S. A. Nazarov. The Eshelby theorem and the problem on optimal patch. Algebra i analiz, Tome 21 (2009) no. 5, pp. 155-195. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a7/
[1] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR | Zbl
[2] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. mat. anal., 16, SPbGU, SPb., 1997, 167–192
[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl
[4] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR | Zbl
[5] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002 | Zbl
[6] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962
[7] Zorin I. S., Movchan A. B., Nazarov S. A., “O primenenii tenzorov uprugoi emkosti, polyarizatsii i prisoedinennoi deformatsii”, Issled. po uprugosti i plastichnosti, 16, LGU, L., 1990, 75–91 | MR
[8] Nazarov S. A., “Tenzor i mery povrezhdennosti. I. Asimptoticheskii analiz anizotropnoi sredy s defektami”, Izv. RAN. Mekh. tverd. tela, 2000, no. 3, 113–124
[9] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh razlozhenii”, Tr. S.-Peterburg. mat. o-va, 5, 1998, 112–183 | Zbl
[10] Movchan A. B., “Matritsy polyarizatsii i emkosti Vinera dlya operatora teorii uprugosti v dvusvyaznykh oblastyakh”, Mat. zametki, 47:2 (1990), 151–153 | MR | Zbl
[11] Movchan A. B., “Integral characteristics of elastic inclusions and cavities in the two-dimensional theory of elesticity”, European J. Appl. Math., 3 (1992), 21–30 | DOI | MR | Zbl
[12] Movchan A. B., Movchan N. V., Mathematical modelling of solids with nonregular boundaries, CRC Press, Boca Raton, 1995 | MR
[13] Argatov I. I., “Integralnye kharakteristiki zhestkikh vklyuchenii i polostei v ploskoi teorii uprugosti”, Prikl. mat. i mekh., 62:2 (1998), 283–289 | MR | Zbl
[14] Eshelbi Dzh., Kontinualnaya teoriya dislokatsii, IL, M., 1963
[15] Kunin I. A., Elastic media with microstructure. II. Three dimensional models, Springer Ser. Solid-State Sci., 44, Springer-Verlag, Berlin, 1983 | MR | Zbl
[16] Kanaun S. K., Levin V. M., Metod effektivnogo polya v mekhanike kompozitnykh materialov, Petrozavod. un-t, Petrozavodsk, 1993 | MR | Zbl
[17] Kunin I. A., Sosnina E. G., “Ellipsoidalnaya neodnorodnost v uprugoi srede”, Dokl. AN SSSR, 199:3 (1971), 571–574 | Zbl
[18] Kunin I. A., Sosnina E. G., “Kontsentratsiya napryazhenii na ellipsoidalnoi neodnorodnosti v anizotropnoi uprugoi srede”, Prikl. mat. i mekh., 37:2 (1973), 306–315 | Zbl
[19] Mura T., Micromechanics of defects in solids, 2nd ed., Kluwer, Dordrecht, 1987 | Zbl
[20] Freidin A. B., “On new phase inclusions in elastic solids”, ZAMM, 87:2 (2007), 102–116 | DOI | MR | Zbl
[21] Freidin A. B., Vilchevskaya E. N., “Multiple development of new phase inclusions in elastic solids”, Internat. J. Engrg. Sci., 47:2 (2009), 240–260 | DOI | MR
[22] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[23] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[24] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292
[25] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[26] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl
[27] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959
[28] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[29] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI
[30] Lobo M., Nazarov S. A., Perez E., “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | DOI | MR | Zbl
[31] Roǐtberg Ya. A., Elliptic boundary value problems in the spaces of distributions, Math. Appl., 384, Kluwer Acad. Publ. Group, Dordrecht, 1996 | MR
[32] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl
[33] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for soluitons of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[34] Roitberg Ya. A., Sheftel Z. G., “Obschie granichnye zadachi dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 148:5 (1963), 1034–1037 | MR
[35] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[36] Mazja W. G., Nasarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, I, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 82, Akademie-Verlag, Berlin, 1991 ; Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Oper. Theory Adv. Appl., 111, Birkhäuser-Verlag, Basel, 2000 | MR | MR
[37] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh granitsy vblizi uglovykh i konicheskikh tochek”, Tr. Mosk. mat. o-va, 50, 1987, 79–129 | MR
[38] Nazarov S. A., Shpekovius-Noigebauer M., “Approksimatsiya neogranichennykh oblastei ogranichennymi. Kraevye zadachi dlya operatora Lame”, Algebra i analiz, 8:5 (1996), 229–268 | MR | Zbl
[39] Nazarov S. A., Sokolowski J., “Asymptotic analysis of shape functionals”, J. Math. Pures Appl. (9), 82:2 (2003), 125–196 | MR | Zbl
[40] Nazarov S. A., Specovius-Neugebauer M., “Approximation of exterior problems. Optimal conditions for the Laplacian”, Analysis, 16:4 (1996), 305–324 | MR | Zbl
[41] Nazarov S. A., Sokolowski J., “Self-adjoint extensions for the Neumann Laplacian and applications”, Acta Math. Sin. (Engl. Ser.), 22:3 (2006), 879–906 | DOI | MR | Zbl
[42] Langer S., Nazarov S. A., Shpekovius-Noigebauer M., “Affinnye preobrazovaniya trekhmernykh anizotropnykh sred i yavnye formuly dlya fundamentalnykh matrits”, Prikl. mekh. i tekhn. fiz., 47:2 (2006), 95–102 | MR | Zbl
[43] Kupradze V. D., Gegeliya T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii upurugosti i termouprugosti, Nauka, M., 1976 | MR
[44] Lifshits I. M., Rozentsveig L. N., “O postroenii tenzora Grina dlya osnovnogo uravneniya teorii uprugosti v sluchae neogranichennoi uprugo-anizotropnoi sredy”, Zh. eksperim. i teor. fiz., 17:9 (1947), 783–791 | MR
[45] Kröner E., “Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen”, Z. Physik, 136 (1953), 402–410 | DOI | MR | Zbl