On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$
Algebra i analiz, Tome 21 (2009) no. 5, pp. 138-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strongly regular graph with $\lambda=0$ and $\mu=3$ is of degree $3$ or $21$. The automorphisms of prime order and the subgraphs of their fixed points are described for a strongly regular graph $\Gamma$ with parameters $(162,21,0,3)$. In particular, the inequality $|G/O(G)|\le 2$ holds true for $G=\operatorname{Aut}(\Gamma)$.
@article{AA_2009_21_5_a6,
     author = {A. A. Makhnev and V. V. Nosov},
     title = {On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$},
     journal = {Algebra i analiz},
     pages = {138--154},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a6/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. V. Nosov
TI  - On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$
JO  - Algebra i analiz
PY  - 2009
SP  - 138
EP  - 154
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_5_a6/
LA  - ru
ID  - AA_2009_21_5_a6
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. V. Nosov
%T On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$
%J Algebra i analiz
%D 2009
%P 138-154
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_5_a6/
%G ru
%F AA_2009_21_5_a6
A. A. Makhnev; V. V. Nosov. On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$. Algebra i analiz, Tome 21 (2009) no. 5, pp. 138-154. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a6/

[1] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl

[2] Makhnev A. A., Nosov V. V., “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=0$, $\mu=2$”, Mat. sb., 195:3 (2004), 47–68 | MR | Zbl

[3] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercise in the theory of graph spectra”, European J. Combin., 14 (1993), 397–407 | DOI | MR | Zbl

[4] Brouwer A. E., Cohen A., Neumaier A., Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR | Zbl

[5] Cameron P., Permutation groups, London Math. Soc. Stud. Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | Zbl