On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$
Algebra i analiz, Tome 21 (2009) no. 4, pp. 196-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigation is continued of the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$. Two recurrence relations are obtained for the universal weight function with the help of the method of projections. On the level of the evaluation representation of $U_q(\widehat{\mathfrak{gl}}_N)$, two recurrence relations are reproduced, which were calculated earlier for the off-shell Bethe vectors by combinatorial methods. One of the results of the paper is a description of two different but isomorphic currents or “new” realizations of the algebra $U_q(\widehat{\mathfrak{gl}}_N)$, corresponding to two different Gauss decompositions of the fundamental $\mathrm{L}$-operators.
@article{AA_2009_21_4_a4,
     author = {A. F. Oskin and S. Z. Pakulyak and A. V. Silantiev},
     title = {On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$},
     journal = {Algebra i analiz},
     pages = {196--240},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_4_a4/}
}
TY  - JOUR
AU  - A. F. Oskin
AU  - S. Z. Pakulyak
AU  - A. V. Silantiev
TI  - On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$
JO  - Algebra i analiz
PY  - 2009
SP  - 196
EP  - 240
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_4_a4/
LA  - ru
ID  - AA_2009_21_4_a4
ER  - 
%0 Journal Article
%A A. F. Oskin
%A S. Z. Pakulyak
%A A. V. Silantiev
%T On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$
%J Algebra i analiz
%D 2009
%P 196-240
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_4_a4/
%G ru
%F AA_2009_21_4_a4
A. F. Oskin; S. Z. Pakulyak; A. V. Silantiev. On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$. Algebra i analiz, Tome 21 (2009) no. 4, pp. 196-240. http://geodesic.mathdoc.fr/item/AA_2009_21_4_a4/

[1] Chari V., Pressley A., “Quantum affine algebras and their representations”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 59–78 | MR | Zbl

[2] Drinfeld V. G., “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 ; Soviet Math. Dokl., 36:2 (1998), 212–216 | MR

[3] Ding J., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl

[4] Ding J., Khoroshkin S., Pakuliak S., “Integral presentations for the universal $R$-matrix”, Lett. Math. Phys., 53:2 (2000), 121–141 | DOI | MR | Zbl

[5] Ding J., Khoroshkin S., “Weyl group extension of quantized current algebras”, Transform. Groups, 5 (2000), 35–59 | DOI | MR

[6] Ding D., Pakulyak S., Khoroshkin S., “Faktorizatsiya universalnoi\break $R$-matritsy dlya $U_q(\widehat{sl}_2)$”, Teor. mat. fiz., 124:2 (2000), 179–214 | MR | Zbl

[7] Enriquez B., “On correlation functions of Drinfeld currents and shuffle algebras”, Transform. Groups, 5:2 (2000), 111–120 | DOI | MR | Zbl

[8] Enriquez B., Khoroshkin S., Pakuliak S., “Weight functions and Drinfeld currents”, Comm. Math. Phys., 276 (2007), 691–725 | DOI | MR | Zbl

[9] Enriquez B., Rubtsov V., “Quasi-Hopf algebras associated with $\mathfrak{sl}_2$ and complex curves”, Israel J. Math., 112 (1999), 61–108 | DOI | MR

[10] Pakulyak S. Z., Khoroshkin S. M., “Vesovaya funktsiya dlya kvantovoi affinnoi algebry $U_q(\widehat{\mathfrak{sl}}_3)$”, Teor. mat. fiz., 145:1 (2005), 3–34 | MR

[11] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell Bethe vectors and Drinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732 | DOI | MR | Zbl

[12] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48 (2008), 277–321 | MR | Zbl

[13] Kulish P., Reshetikhin N., “Diagonalisation of $GL(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A, 16 (1983), L591–L596 | DOI | MR | Zbl

[14] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y(\mathfrak{gl}_n)$”, Comm. Math. Phys., 254 (2005), 191–220 | DOI | MR | Zbl

[15] Reshetikhin N., “Jackson-type integrals, Bethe vectors, and solutions to a difference analog of the Knizhnik–Zamolodchikov system”, Lett. Math. Phys., 26 (1992), 153–165 | DOI | MR | Zbl

[16] Reshetikhin N., Semenov-Tian-Shansky M., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl

[17] Varchenko A. N., Tarasov V. O., “Dzheksonovskie integralnye predstavleniya dlya reshenii kvantovogo uravneniya Knizhnika–Zamolodchikova”, Algebra i analiz, 6:2 (1994), 90–137 ; St. Petersburg Math. J., 6:2 (1995), 275–313 | MR | Zbl

[18] Tarasov V., Varchenko A., Combinatorial formulae for nested Bethe vectors, Eprint arXiv: math.QA/0702277