Exotic invariant for 6-manifolds: a~direct construction
Algebra i analiz, Tome 21 (2009) no. 3, pp. 145-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some of the author's previous works, dealing with the classification problem for simply connected closed 6-manifolds, contain a construction of a certain “exotic” invariant $\Gamma$. This construction is substantially indirect and based on nontrivial calculations. In the present paper, a direct construction is suggested, which does not depend on the calculations mentioned and involves only some simple surgery, plus some well-known identities for Stiefel-Whitney and Pontryagin classes, namely, “modulo 2” and “modulo 4” Wu formulas.
@article{AA_2009_21_3_a5,
     author = {A. V. Zhubr},
     title = {Exotic invariant for 6-manifolds: a~direct construction},
     journal = {Algebra i analiz},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_3_a5/}
}
TY  - JOUR
AU  - A. V. Zhubr
TI  - Exotic invariant for 6-manifolds: a~direct construction
JO  - Algebra i analiz
PY  - 2009
SP  - 145
EP  - 164
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_3_a5/
LA  - ru
ID  - AA_2009_21_3_a5
ER  - 
%0 Journal Article
%A A. V. Zhubr
%T Exotic invariant for 6-manifolds: a~direct construction
%J Algebra i analiz
%D 2009
%P 145-164
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_3_a5/
%G ru
%F AA_2009_21_3_a5
A. V. Zhubr. Exotic invariant for 6-manifolds: a~direct construction. Algebra i analiz, Tome 21 (2009) no. 3, pp. 145-164. http://geodesic.mathdoc.fr/item/AA_2009_21_3_a5/

[1] Zhubr A. V., “Classification of simply-connected topological 6-manifolds”, Topology and Geometry – Rohlin Seminar, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 325–339 | MR

[2] Zhubr A. V., “Zamknutye odnosvyaznye shestimernye mnogoobraziya: dokazatelstva klassifikatsionnykh teorem”, Algebra i analiz, 12:4 (2000), 126–230 | MR | Zbl

[3] Quinn F., “Ends of maps. III. Dimensions 4 and 5”, J. Differential Geom., 17 (1982), 503–521 | MR | Zbl

[4] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[5] Jupp P. E., “Classification of certain 6-manifolds”, Proc. Cambridge Philos. Soc., 73 (1973), 293–300 | DOI | MR | Zbl

[6] Siebenmann L. C., “Topological manifolds”, Actes du Congrès International des Mathématiciens, Vol. 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 133–163 | MR

[7] Kirby R. C., Siebenmann L. C., Foundational essays on topological manifolds, smoothings, and triangulations, Ann. Math. Stud., 88, Princeton Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo, 1977 | MR | Zbl

[8] Freedman M. H., “The topology of four-dimensional manifolds”, J. Differential Geom., 17 (1982), 357–453 | MR | Zbl

[9] Haefliger A., “Knotted $(4\mathrm k-1)$-spheres in $6\mathrm k$-space”, Ann. of Math. (2), 75 (1962), 452–466 | DOI | MR | Zbl

[10] Wall C. T. C., “Classification problems in differential topology. V. On certain 6-manifolds”, Invent. Math., 1 (1966), 355–374 | DOI | MR

[11] Zhubr A. V., “Spin bordism of oriented manifolds and the Hauptvermutung for 6-manifolds”, Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser. 2, 202, eds. V. Turaev, A. Vershik, Amer. Math. Soc., Providence, RI, 2001, 263–286 | MR | Zbl

[12] Wu Wen-tsün, “On Pontrjagin classes. III”, Acta Math. Sinica, 4 (1954), 323–346 | MR

[13] Mosher R., Tangora M., Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, Mir, M., 1970 | MR | Zbl

[14] Cerf J., Sur les difféomorphismes de la sphère de dimension trois $(\Gamma_4=0)$, Lecture Notes in Math., 53, Springer-Verlag, Berlin–New York, 1968 | MR | Zbl