Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_3_a1, author = {N. M. Bogolyubov}, title = {Five vertex model with fixed boundary conditions}, journal = {Algebra i analiz}, pages = {58--78}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_3_a1/} }
N. M. Bogolyubov. Five vertex model with fixed boundary conditions. Algebra i analiz, Tome 21 (2009) no. 3, pp. 58-78. http://geodesic.mathdoc.fr/item/AA_2009_21_3_a1/
[1] Bekster R., Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR
[2] Lieb E. H., Wu F. Y., Phase transitions and critical phenomena, Vol. 1, Acad. Press, London, 1972 | Zbl
[3] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[4] Korepin V., Zinn-Justin P., “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl
[5] Bogoliubov N. M., Kitaev A. V., Zvonarev M. B., “Boundary polarization in the six-vertex model”, Phys. Rev. E (3), 65:2 (2002), 026126, 4 pp. | DOI | MR
[6] Bogoliubov N. M., Pronko A. G., Zvonarev M. B., “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35:27 (2002), 5525–5541 | DOI | MR | Zbl
[7] Allison D., Reshetikhin N., “Numerical study of the 6-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847–1869 | MR | Zbl
[8] Syljuåsen O., Zvonarev M., “Directed-loop Monte Carlo simulations of vertex models”, Phys. Rev. E (3), 70 (2004), 016118 | DOI
[9] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[10] Bressoud D. M., Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[11] Kuperberg G., “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl
[12] Colomo F., Pronko A. C., “Square ice, alternating sign matrices, and classical orthogonal polynomials”, J. Stat. Mech. Theory Exp., 2005, no. 1, 005, 33 pp., (electronic) | MR
[13] Ferrari P. L., Spohn H., “Domino tilings and the six-vertex model at its free fermion point”, J. Phys. A, 39 (2006), 10297–10306 | DOI | MR | Zbl
[14] Bogoliubov N. M., “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 | DOI | MR | Zbl
[15] Bogolyubov N. M., “Perechislenie ploskikh razbienii i algebraicheskii anzats Bete”, Teor. i mat. fiz., 150:2 (2007), 193–203 | MR | Zbl
[16] Tsilevich N. V., “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. anal. i ego pril., 40:3 (2006), 53–65 | MR | Zbl
[17] Shigechi K., Uchiyama M., “Boxed skew plane partition and integrable phase model”, J. Phys. A, 38 (2005), 10287–10306 | DOI | MR | Zbl
[18] Bogolyubov N. M., “Chetyrëkhvershinnaya model”, Zap. nauch. semin. POMI, 347, 2007, 34–55 | MR
[19] Bogolyubov N. M., “Chetyrëkhvershinnaya model i sluchainye ukladki”, Teor. i mat. fiz., 155:1 (2008), 25–38 | MR | Zbl
[20] Noh J. D., Kim D., “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1994), 1943 | DOI
[21] Gwa L.-H., Spohn H., “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl
[22] Rajesh R., Dhar D., “An exactly solvable anisotropic directed percolation model in three dimensions”, Phys. Rev. Lett., 81 (1998), 1646 | DOI
[23] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR
[24] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, Vol. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Acad., Chur, 1980, 107–155 | MR
[25] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Lecture Notes in Phys., 151, Springer, Berlin–New York, 1982, 61–119 | MR
[26] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl
[27] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[28] Bogoliubov N. M., Nassar T., “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345–350 | DOI | MR | Zbl
[29] Kim D., “Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang-type growth model”, Phys. Rev. E, 52 (1995), 3512 | DOI
[30] Izergin A. G., Coker D. A., Korepin V. E., “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[31] Gwa L.-H., Spohn H., “Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation”, Phys. Rev. A, 46 (1992), 844 | DOI
[32] Priezzhev V. B., “Exact nonstationary probabilities in the asymmetric exclusion process on a ring”, Phys. Rev. Lett., 91 (2003), 050601 | DOI
[33] Golinelli O., Mallick K., “The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics”, J. Phys. A, 39 (2006), 12679–12705 | DOI | MR | Zbl