Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_3_a0, author = {T. Erd\'elyi}, title = {George {Lorentz} and inequalities in approximation}, journal = {Algebra i analiz}, pages = {1--57}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_3_a0/} }
T. Erdélyi. George Lorentz and inequalities in approximation. Algebra i analiz, Tome 21 (2009) no. 3, pp. 1-57. http://geodesic.mathdoc.fr/item/AA_2009_21_3_a0/
[1] Amoroso F., “Sur le diamètre transfini entier d'un intervalle réel”, Ann. Inst. Fourier (Grenoble), 40 (1990), 885–911, (1991) | MR | Zbl
[2] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 3–22 | MR | Zbl
[3] Bak J., Newman D. J., “Rational combinations of $x^{\lambda_k}$, $\lambda_k\geq0$, are always dense in $C[0,1]$”, J. Approx. Theory, 23 (1978), 155–157 | DOI | MR | Zbl
[4] Bastero J., “$\ell_q$-subspaces of stable $p$-Banach spaces, $0
\le 1$”, Arch. Math. (Basel), 40 (1983), 538–544 | MR | Zbl[5] Beck J., “Flat polynomials on the unit circle – note on a problem of Littlewood”, Bull. London Math. Soc., 23 (1991), 269–277 | DOI | MR | Zbl
[6] Benko D., Erdélyi T., “Markov inequality for polynomials of degree $n$ with $m$ distinct zeros”, J. Approx. Theory, 122 (2003), 241–248 | MR | Zbl
[7] Benko D., Erdélyi T., Szabados J., “The full Markov–Newman inequality for Müntz polynomials on positive intervals”, Proc. Amer. Math. Soc., 131 (2003), 2385–2391, (electronic) | DOI | MR | Zbl
[8] Bernshtein C. H., “O predstavlenii polozhitelnykh mnogochlenov”, Konstruktivnaya teoriya funktsii, Sobranie sochinenii. T. 1, AN SSSR, M., 1952, 251–252
[9] Beaucoup F., Borwein P., Boyd D., Pinner C., “Multiple roots of $[-1,1]$ power series”, J. London Math. Soc. (2), 57:1 (1998), 135–147 | DOI | MR | Zbl
[10] Bloch A., Pólya G., “On the roots of certain algebraic equations”, Proc. London Math. Soc. (2), 33 (1932), 102–114 | DOI
[11] Bombieri E., Vaaler J., “Polynomials with low height and prescribed vanishing”, Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math., 70, Birkhäuser Boston, Boston, MA, 1987, 53–73 | MR
[12] Borwein P., “Markov's inequality for polynomials with real zeros”, Proc. Amer. Math. Soc., 93 (1985), 43–47 | DOI | MR | Zbl
[13] Borwein P., Computational excursions in analysis and number theory, CMS Books in Math./Ouvrages de Math. de la SMC, 10, Springer, New York, 2002 | MR
[14] Borwein P., Erdélyi T., “Markov–Bernstein-type inequalities for classes of polynomials with restricted zeros”, Constr. Approx., 10 (1994), 411–425 | DOI | MR | Zbl
[15] Borwein P., Erdélyi T., “Markov and Bernstein type inequalities in $L_p$ for classes of polynomials with constraints”, J. London Math. Soc. (2), 51 (1995), 573–588 | MR | Zbl
[16] Borwein P., Erdélyi T., “Upper bounds for the derivative of exponential sums”, Proc. Amer. Math. Soc., 123 (1995), 1481–1486 | DOI | MR | Zbl
[17] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, NY, 1995 | MR
[18] Borwein P., Erdélyi T., “Müntz spaces and Remez inequalities”, Bull. Amer. Math. Soc. (N.S.), 32 (1995), 38–42 | DOI | MR | Zbl
[19] Borwein P., Erdélyi T., “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43 (1996), 413–423, (1997) | MR
[20] Borwein P., Erdélyi T., “The full Müntz theorem in $C[0,1]$ and $L_1[0,1]$”, J. London Math. Soc. (2), 54 (1996), 102–110 | MR | Zbl
[21] Borwein P., Erdélyi T., “Newman's inequality for Müntz polynomials on positive intervals”, J. Approx. Theory, 85 (1996), 132–139 | DOI | MR | Zbl
[22] Borwein P., Erdélyi T., “The $L_p$ version of Newman's inequality for lacunary polynomials”, Proc. Amer. Math. Soc., 124 (1996), 101–109 | DOI | MR | Zbl
[23] Borwein P., Erdélyi T., “A sharp Bernstein-type inequality for exponential sums”, J. Reine Angew. Math., 476 (1996), 127–141 | MR | Zbl
[24] Borwein P., Erdélyi T., “The integer Chebyshev problem”, Math. Comp., 65 (1996), 661–681 | DOI | MR | Zbl
[25] Borwein P., Erdélyi T., “Generalizations of Müntz's theorem via a Remez-type inequality for Müntz spaces”, J. Amer. Math. Soc., 10 (1997), 327–349 | DOI | MR | Zbl
[26] Borwein P., Erdélyi T., “On the zeros of polynomials with restricted coefficients”, Illinois J. Math., 41 (1997), 667–675 | MR | Zbl
[27] Borwein P., Erdélyi T., “Pointwise Remez- and Nikolskii-type inequalities for exponential sums”, Math. Ann., 316 (2000), 39–60 | DOI | MR | Zbl
[28] Borwein P., Erdélyi T., “Markov- and Bernstein-type inequalities for polynomials with restricted coefficients”, Ramanujan J., 1 (1997), 309–323 | DOI | MR | Zbl
[29] Borwein P., Erdélyi T., “Littlewood-type problems on subarcs of the unit circle”, Indiana Univ. Math. J., 46 (1997), 1323–1346 | DOI | MR | Zbl
[30] Borwein P., Erdélyi T., “Markov–Bernstein type inequalities under Littlewood-type coefficient constraints”, Indag. Math. (N.S.), 11 (2000), 159–172 | DOI | MR | Zbl
[31] Borwein P., Erdélyi T., “Lower bounds for the merit factors of trigonometric polynomials from Littlewood classes”, J. Approx. Theory, 125 (2003), 190–197 | DOI | MR | Zbl
[32] Borwein P., Erdélyi T., “Nikolskii-type inequalities for shift invariant function spaces”, Proc. Amer. Math. Soc., 134 (2006), 3243–3246, (electronic) | DOI | MR | Zbl
[33] Borwein P., Erdélyi T., “Lower bounds for the number of zeros of cosine polynomials in the period: a problem of Littlewood”, Acta Arith., 128 (2007), 377–384 | DOI | MR | Zbl
[34] Borwein P., Erdélyi T., Kós G., “Littlewood-type problems on $[0,1]$”, Proc. London Math. Soc. (3), 79 (1999), 22–46 | DOI | MR | Zbl
[35] Borwein P., Erdélyi T., Zhang J., “Müntz systems and orthogonal Müntz–Legendre polynomials”, Trans. Amer. Math. Soc., 342 (1994), 523–542 | DOI | MR | Zbl
[36] Borwein P., Erdélyi T., Zhang J., “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50 (1994), 501–519 | MR | Zbl
[37] Borwein P., Erdélyi T., Littmann F., “Polynomials with coefficients from a finite set”, Trans. Amer. Math. Soc., 360:10 (2008), 5145–5154 | DOI | MR | Zbl
[38] Borwein P., Erdélyi T., Ferguson R., Lockhart R., “On the zeros of cosine polynomials: solution to a problem of Littlewood”, Ann. of Math. (2), 167 (2008), 1109–1117 | DOI | MR | Zbl
[39] Borwein P., Pinner C., Pritsker I., “Monic integer Chebyshev problem”, Math. Comp., 72 (2003), 1901–1916, (electronic) | DOI | MR | Zbl
[40] Boyd D., “On a problem of Byrnes concerning polynomials with restricted coefficients”, Math. Comp., 66 (1997), 1697–1703 | DOI | MR | Zbl
[41] Braess D., Nonlinear approximation theory, Springer Ser. Comput. Math., 7, Springer-Verlag, Berlin, 1986 | MR | Zbl
[42] Clarkson J. A., Erdős P., “Approximation by polynomials”, Duke Math. J., 10 (1943), 5–11 | DOI | MR | Zbl
[43] Conrey B., Granville A., Poonen B., Soundararajan K., “Zeros of Fekete polynomials”, Ann. Inst. Fourier (Grenoble), 50 (2000), 865–889 | MR | Zbl
[44] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[45] Ditzian Z., Lubinsky D., “Jackson and smoothness theorems for Freud weights in $L_p$ $(0
\le\infty)$”, Constr. Approx., 13 (1997), 99–152 | MR | Zbl[46] Erdélyi T., “The Remez inequality on the size of polynomials”, Approximation Theory VI, Vol. I (College Station, TX, 1989), eds. C. K. Chui, L. L. Schumaker, J. D. Wards, Acad. Press, Boston, MA, 1989, 243–246 | MR
[47] Erdélyi T., “Markov-type estimates for certain classes of constrained polynomials”, Constr. Approx., 5 (1989), 347–356 | DOI | MR | Zbl
[48] Erdélyi T., “Estimates for the Lorentz degree of polynomials”, J. Approx. Theory, 67 (1991), 187–198 | DOI | MR | Zbl
[49] Erdélyi T., “Bernstein-type inequality for the derivatives of constrained polynomials”, Proc. Amer. Math. Soc., 112 (1991), 829–838 | DOI | MR | Zbl
[50] Erdélyi T., “Bernstein and Markov type inequalities for generalized nonnegative polynomials”, Canad. J. Math., 43 (1991), 495–505 | MR | Zbl
[51] Erdélyi T., “Remez-type inequalities on the size of generalized polynomials”, J. London Math. Soc. (2), 45 (1992), 255–264 | DOI | MR | Zbl
[52] Erdélyi T., “Remez-type inequalities and their applications”, J. Comput. Appl. Math., 47 (1993), 167–209 | DOI | MR | Zbl
[53] Erdélyi T., “Markov–Bernstein type inequalities for constrained polynomials with real versus complex coefficients”, J. Anal. Math., 74 (1998), 165–181 | DOI | MR | Zbl
[54] Erdélyi T., “Markov-type inequalities for constrained polynomials with complex coefficients”, Illinois J. Math., 42 (1998), 544–563 | MR | Zbl
[55] Erdélyi T., “Markov- and Bernstein-type inequalities for Müntz polynomials and exponential sums in $L_p$”, J. Approx. Theory, 104 (2000), 142–152 | DOI | MR | Zbl
[56] Erdélyi T., “The resolution of Saffari's phase problem”, C. R. Acad. Sci. Paris Sér. I Math., 331:10 (2000), 803–808 | MR | Zbl
[57] Erdélyi T., “On the zeros of polynomials with Littlewood-type coefficient constraints”, Michigan Math. J., 49 (2001), 97–111 | DOI | MR | Zbl
[58] Erdélyi T., “How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?”, Michigan Math. J., 49 (2001), 259–264 | DOI | MR | Zbl
[59] Erdélyi T., “The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari”, Math. Ann., 321 (2001), 905–924 | DOI | MR | Zbl
[60] Erdélyi T., “Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials”, C. R. Acad. Sci. Paris Sér. I Math., 333:7 (2001), 623–628 | MR | Zbl
[61] Erdélyi T., “The “full Clarkson–Erdős–Schwartz theorem” on the closure of non-dense Müntz spaces”, Studia Math., 155 (2003), 145–152 | DOI | MR | Zbl
[62] Erdélyi T., “Extremal properties of the derivatives of the Newman polynomials”, Proc. Amer. Math. Soc., 131 (2003), 3129–3134, (electronic) | DOI | MR | Zbl
[63] Erdélyi T., “On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the phase problem”, Math. Ann., 326 (2003), 489–498 | MR | Zbl
[64] Erdélyi T., “The “full Müntz theorem” revisited”, Constr. Approx., 21 (2005), 319–335 | DOI | MR | Zbl
[65] Erdélyi T., “Bernstein-type inequalities for linear combinations of shifted Gaussians”, Bull. London Math. Soc., 38 (2006), 124–138 | DOI | MR | Zbl
[66] Erdélyi T., “Markov–Nikolskii-type inequalities for exponential sums on finite intervals”, Adv. Math., 208 (2007), 135–146 | DOI | MR | Zbl
[67] Erdélyi T., “The Remez inequality for linear combinations of shifted Gaussians”, Math. Proc. Cambridge Philos. Soc. (to appear) | MR
[68] Erdélyi T., “Newman's inequality for increasing exponential sums”, Number Theory and Polynomials, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008, 127–141 | MR
[69] Erdélyi T., “Inequalities for exponential sums via interpolation and Turán-type reverse Markov inequalities”, Frontiers in Interpolation and Approximation, Pure Appl. Math. (Boca Raton), 282, Chapman Hall/CRC, Boca Raton, FL, 2007, 119–144 | MR
[70] Erdélyi T., “An improvement of the Erdős–Turán theorem on the distribution of zeros of polynomials”, C. R. Math. Acad. Sci. Paris, 346:5–6 (2008), 267–270 | MR | Zbl
[71] Erdélyi T., “Extensions of the Bloch–Pólya theorem on the number of real zeros of polynomials”, J. Théor. Nombres Bordeaux, 20:2 (2008), 281–287 | MR | Zbl
[72] Erdélyi T., Johnson W., “The “full Müntz theorem” in $L_p[0,1]$ for $0
\infty$”, J. Anal. Math., 84 (2001), 145–172 | DOI | MR | Zbl[73] Erdélyi T., Szabados J., “On polynomials with positive coefficients”, J. Approx. Theory, 54 (1988), 107–122 | DOI | MR | Zbl
[74] Erdélyi T., Magnus A., Nevai P., “Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials”, SIAM J. Math. Anal., 25 (1994), 602–614 | DOI | MR | Zbl
[75] Erdélyi T., Nevai P., “Lower bounds for derivatives of polynomials and Remez type inequalities”, Trans. Amer. Math. Soc., 349 (1997), 4953–4972 | DOI | MR | Zbl
[76] Erdélyi T., Máté A., Nevai P., “Inequalities for generalized nonnegative polynomials”, Constr. Approx., 8 (1992), 241–255 | DOI | MR | Zbl
[77] Erdélyi T., Szabados J., “On a generalization of the Bernstein–Markov inequality”, Algebra i analiz, 14:4 (2002), 36–53 ; St. Petersburg Math. J., 14:4 (2003), 563–576 | MR | Zbl
[78] Erdős P., “On extremal properties of the derivatives of polynomials”, Ann. of Math. (2), 41 (1940), 310–313 | DOI | MR | Zbl
[79] Erdős P., “Some unsolved problems”, Michigan Math. J., 4 (1957), 291–300 | DOI | MR
[80] Erdős P., Turán P., “On the distribution of roots of polynomials”, Ann. of Math. (2), 51 (1950), 105–119 | DOI | MR | Zbl
[81] Erőd J., “Bizonyos polinomok maximumának alsó korlátjáról”, Matematikai és Fizikai Lapok, 46 (1939), 83–84
[82] Frappier C., Quelques problèmes extrémaux pour les polynomes et les fonctions entières de type exponentiel, Ph. D. Dissertation, Univ. Montréal, 1982
[83] Freud G., Orthogonal polynomials, Pergamon Press, Oxford, 1971
[84] Güntürk G., “Approximation by power series with $\pm1$ coefficients”, Int. Math. Res. Not., 2005, no. 26, 1601–1610 | DOI | MR | Zbl
[85] Halász G., “Markov-type inequalities for polynomials with restricted zeros”, J. Approx. Theory, 101 (1999), 148–155 | DOI | MR | Zbl
[86] Hare K., Smyth C., “The monic integer transfinite diameter”, Math. Comp., 75 (2006), 1997–2019, (electronic) | DOI | MR | Zbl
[87] Hausdorff F., “Summationsmethoden und Momentfolgen. I”, Math. Z., 9 (1921), 74–109 | DOI | MR | Zbl
[88] Hua L. K., Introduction to number theory, Springer-Verlag, Berlin–New York, 1982 | MR
[89] Kac M., “On the average number of real roots of a random algebraic equation. II”, Proc. London Math. Soc. (2), 50 (1949), 390–408 | DOI | MR
[90] Kahane J. P., “Sur les polynômes à coefficients unimodulaires”, Bull. London Math. Soc., 12 (1980), 321–342 | DOI | MR | Zbl
[91] Körner T., “On a polynomial of Byrnes”, Bull. London Math. Soc., 12 (1980), 219–224 | DOI | MR | Zbl
[92] Konyagin S., “On a question of Pichorides”, C. R. Acad. Sci. Paris Sér I Math., 324 (1997), 385–388 | MR | Zbl
[93] Konyagin S. V., “O probleme Littlvuda”, Izv. AN SSSR. Ser. mat., 45:2 (1981), 243–265 ; Math. USSR-Izv., 18:2 (1982), 205–225 | MR | Zbl | DOI
[94] Konyagin S. V., Lev V. F., “Character sums in complex half-planes”, J. Théor. Nombres Bordeaux, 16:3 (2004), 587–606 | MR | Zbl
[95] Levenberg N., Poletsky E., “Reverse Markov inequality”, Ann. Acad. Sci. Fenn. Math., 27 (2002), 173–182 | MR | Zbl
[96] Littlewood J. E., “On the mean values of certain trigonometric polynomials”, J. London Math. Soc., 36 (1961), 307–334 | DOI | MR | Zbl
[97] Littlewood J. E., “On the real roots of real trigonometrical polynomials. II”, J. London Math. Soc., 39 (1964), 511–552 | DOI | MR
[98] Littlewood J. E., “On polynomials $\sum\pm z^m$ and $\sum e^{\alpha_mi}z^m$, $z=e^{\theta i}$”, J. London Math. Soc., 41 (1966), 367–376 | DOI | MR | Zbl
[99] Littlewood J. E., Some problems in real and complex analysis, D. C. Heath and Co., Lexington, MA, 1968 | MR | Zbl
[100] Littlewood J. E., Offord A. C., “On the number of real roots of a random algebraic equation. II”, Proc. Cambridge Philos. Soc., 35 (1939), 133–148 | DOI | Zbl
[101] Szabados J., Kroó A., “Constructive properties of self-reciprocal polynomials”, Analysis, 14 (1994), 319–339 | MR | Zbl
[102] Lorentz G. G., “The degree of approximation by polynomials with positive coefficients”, Math. Ann., 151 (1963), 239–251 | DOI | MR | Zbl
[103] Lorentz G. G., “Notes on approximation”, J. Approx. Theory, 56 (1989), 360–365 | DOI | MR | Zbl
[104] Lorentz G. G., Approximation of functions, 2nd ed., Chelsea Publ. Co., New York, 1986 | MR | Zbl
[105] Lorentz G. G., von Golitschek M., Makovoz Y., Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl
[106] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ. Co., Inc., River Edge, NJ, 1994 | MR | Zbl
[107] McGehee O. C., Pigno L., Smith B., “Hardy's inequality and the $L_1$ norm of exponential sums”, Ann. of Math. (2), 113 (1981), 613–618 | DOI | MR | Zbl
[108] Mercer I. D., “Unimodular roots of special Littlewood polynomials”, Canad. Math. Bull., 49:3 (2006), 438–447 | MR | Zbl
[109] Mhaskar H. N., Introduction to the theory of weighted polynomial approximation, Ser. Approx. Decompos., 7, World Publ. Co., Inc., River Edge, NJ, 1996 | MR | Zbl
[110] Mhaskar H. N., “When is approximation by Gaussian networks necessarily a linear process?”, Neural Networks, 17 (2004), 989–1001 | DOI | Zbl
[111] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conf. Ser. in Math., 84, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[112] Müntz C., Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift, Berlin, 1914
[113] Nazarov F. L., “Lokalnye otsenki eksponentsialnykh polinomov i ikh prilozheniya k neravenstvam tipa printsipa neopredelennosti”, Algebra i analiz, 5:4 (1993), 3–66 ; St. Petersburg Math. J., 5:4 (1994), 663–717 | MR | Zbl
[114] Newman D. J., “Derivative bounds for Müntz polynomials”, J. Approx. Theory, 18 (1976), 360–362 | DOI | MR | Zbl
[115] Newman D. J., Approximation with rational functions, CBMS Regional Conf. Ser. in Math., 41, Conf. Board of Math. Sci., Washington, DC, 1979 | MR | Zbl
[116] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. Mat. in-ta AN SSSR, 38, 1951, 244–278 | MR | Zbl
[117] Odlyzko A., Poonen B., “Zeros of polynomials with $0,1$ coefficients”, Enseign. Math. (2), 39 (1993), 317–348 | MR | Zbl
[118] Petrushev P. P., Popov V. A., Rational approximation of real functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[119] Pichorides S. K., “Notes on trigonometric polynomials”, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 84–94 | MR
[120] Rahman Q. I., Schmeisser G., Les inegalités de Markoff et de Bernstein, Sém. Math. Supér., 86, Presses Univ. Montréal, Montreal, QC, 1983 | MR | Zbl
[121] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monogr. New Ser., 26, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[122] Remes E. J., “Sur une propriété extrémale des polynômes de Tchebyscheff”, Zap. Nauch.-issled. in-ta mat. i mekh. Khark. un-ta i Khark. mat. o-va (4), 13:1 (1936), 93–95 | Zbl
[123] Révész Sz., “Turán type reverse Markov inequalities for compact convex sets”, J. Approx. Theory, 141 (2006), 162–173 | DOI | MR | Zbl
[124] Queffélec H., Saffari B., “Unimodular polynomials and Bernstein's inequalities”, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 313–318 | MR | Zbl
[125] Queffélec H., Saffari B., “On Bernstein's inequality and Kahane's ultraflat polynomials”, J. Fourier Anal. Appl., 2 (1996), 519–582 | DOI | MR | Zbl
[126] Saffari B., “The phase behavior of ultraflat unimodular polynomials”, Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 372, Kluwer Acad. Publ., Dordrecht, 1992, 555–572 | MR
[127] Scheick J. T., “Inequalities for derivatives of polynomials of special type”, J. Approx. Theory, 6 (1972), 354–358 | DOI | MR | Zbl
[128] Schmidt E., “Zur Kompaktheit bei Exponentialsummen”, J. Approx. Theory, 3 (1970), 445–454 | DOI | MR | Zbl
[129] Schur I., “Untersuchungen über algebraische Gleichungen”, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl., 1933, no. 7–10, 403–428 | Zbl
[130] Sheil-Small T., Complex polynomials, Cambridge Stud. Adv. Math., 75, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[131] Somorjai G., “A Müntz-type problem for rational approximation”, Acta. Math. Acad. Sci. Hungar., 27 (1976), 197–199 | DOI | MR | Zbl
[132] Solomyak B., “On the random series $\sum\pm\lambda^n$ (Erdős problem)”, Ann. of Math. (2), 142 (1995), 611–625 | DOI | MR | Zbl
[133] Szegő G., “Bemerkungen zu einem Satz von E. Schmidt uber algebraische Gleichungen”, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl., 1934, no. 8, 86–98 | Zbl
[134] Szegő G., Zygmund A., “On certain mean values of polynomials”, J. Anal. Math., 3 (1954), 225–244 | DOI | MR | Zbl
[135] Totik V., Varjú P., “Polynomials with prescribed zeros and small norm”, Acta Sci. Math. (Szeged), 73 (2007), 593–611 | Zbl
[136] Turán P., “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl
[137] Turán P., On a new method of analysis and its applications, Wiley, New York, NY, 1984 | MR | Zbl
[138] Wu Q., “A new exceptional polynomial for the integer transfinite diameter of $[0,1]$”, J. Théor. Nombres Bordeaux, 15 (2003), 847–861 | MR | Zbl