Spectral synthesis in the kernel of a~convolution operator in weighted spaces
Algebra i analiz, Tome 21 (2009) no. 2, pp. 264-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted spaces of analytic function on a bounded convex domain $D\subset \mathbb C^p$ are treated. Let $U =\{u_n\}_{n=1}^\infty$ be a monotone decreasing sequence of convex functions on $D$ such that $u_n(z)\to\infty$ as $\operatorname{dist}(z,\partial D)\to 0$. The symbol $H(D,U)$ stands for the space of all $f\in H(D)$ satisfying $|f(z)|\exp(-u_n(z))\to 0$ as $\operatorname{dist}(z,\partial D)\to 0$, for all $n\in \mathbb N$. This space is endowed with a locally convex topology with the aid of the seminorms $p_n(f)=\sup\limits_{z\in D}|f(z)|\exp(-u_n(z))$, $n=1,2,\dots$ . Clearly, every functional $S\in H^*(D)$ is a continuous linear functional on $H(D,U)$, and the corresponding convolution operator $M_S\colon f\to S_w(f(z+w))$ acts on $H(D,U)$. All elementary solutions of the equation $M_S[f]=0\ (*)$, i.e., all solutions of the form $z^\alpha e^{\langle a,z\rangle}$, $\alpha\in\mathbb Z_+^p$, $a\in\mathbb C^p$, belong to $H(D,U)$. It is shown that the system $E(S)$ of elementary solutions is dense in the space of solutions of equation $(*)$ that belong to $H(D,U)$.
Keywords: weighted spaces of analytic functions, convolution operator, spectral synthesis.
@article{AA_2009_21_2_a9,
     author = {R. S. Yulmukhametov},
     title = {Spectral synthesis in the kernel of a~convolution operator in weighted spaces},
     journal = {Algebra i analiz},
     pages = {264--279},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a9/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Spectral synthesis in the kernel of a~convolution operator in weighted spaces
JO  - Algebra i analiz
PY  - 2009
SP  - 264
EP  - 279
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_2_a9/
LA  - ru
ID  - AA_2009_21_2_a9
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Spectral synthesis in the kernel of a~convolution operator in weighted spaces
%J Algebra i analiz
%D 2009
%P 264-279
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_2_a9/
%G ru
%F AA_2009_21_2_a9
R. S. Yulmukhametov. Spectral synthesis in the kernel of a~convolution operator in weighted spaces. Algebra i analiz, Tome 21 (2009) no. 2, pp. 264-279. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a9/

[1] Ehrenpreis L., Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ., New York etc., 1970 | MR | Zbl

[2] Krasichkov-Ternovskii I. F., “Odnorodnoe uravnenie tipa svërtki na vypuklykh oblastyakh”, Dokl. AN SSSR, 197:1 (1971), 29–31

[3] Malgrange B., “Existence et approximation des solutions des équations dérivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–1956), 271–355 | MR

[4] Ehrenpreis L., “Mean periodic function”, Amer. J. Math., 77 (1955), 293–328 | DOI | MR | Zbl

[5] Napalkov V. V., Uravneniya svërtki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[6] Yulmukhametov R. S., “Odnorodnye uravneniya svërtki”, Dokl. AN SSSR, 316:2 (1991), 312–315 | MR | Zbl

[7] Epifanov O. V., “Dvoistvennost odnoi pary prostranstv analiticheskikh funktsii ogranichennogo rosta”, Dokl. AN SSSR, 319:6 (1991), 1297–1300 | MR | Zbl

[8] Abuzyarova N. F., Yulmukhametov R. S., “Sopryazhënnye prostranstva k vesovym prostranstvam analiticheskikh funktsii”, Sib. mat. zh., 42:1 (2001), 3–17 | MR | Zbl

[9] Grotendik A. O., “O prostranstvakh (F) i (DF)”, Matematika. Period. sb. per. in. st., 2:3 (1958), 81–127

[10] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, Uspekhi mat. nauk, 47:6 (1992), 3–58 | MR | Zbl

[11] Sibony N., “Approximation polynomiale pondérée dans un domaine d'holomorphie de $\mathbb C^n$”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 77–99 | MR

[12] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[13] Krasichkov-Ternovskii I. F., “Otsenka subgarmonicheskoi raznosti subgarmonicheskikh funktsii. I”, Mat. sb., 102(144):2 (1977), 216–247 | MR | Zbl

[14] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[15] Rokafellar R., Vypuklyi analiz, Mir, M., 1973