Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_2_a7, author = {I. A. Panin and S. A. Yagunov}, title = {Duality theorem for motives}, journal = {Algebra i analiz}, pages = {205--213}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a7/} }
I. A. Panin; S. A. Yagunov. Duality theorem for motives. Algebra i analiz, Tome 21 (2009) no. 2, pp. 205-213. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a7/
[1] Adams J. F., Stable homotopy and generalized homology, Univ. of Chicago Press, Chicago–London, 1974 | MR
[2] Dold A., Puppe D., “Dvoistvennost, sled i transfer”, Tr. MIAN, 154, Nauka, M., 1983, 81–97 | MR
[3] Fomenko A., Fuks D., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[4] Friedlander E., Voevodsky V., “Bivariant cycle cohomology”, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187 | MR | Zbl
[5] Manin Yu. I., “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Mat. sb., 77(119):4 (1968), 475–507 | MR | Zbl
[6] May J. P., “The additivity of traces in triangulated categories”, Adv. Math., 163:1 (2001), 34–73 | DOI | MR | Zbl
[7] Mazza C., Voevodsky V., Weibel C., Lecture notes on motivic cohomology, Clay Math. Monogr., 2, Amer. Math. Soc., Providence, RI; Clay Math. Inst., Cambridge, MA, 2006 | MR | Zbl
[8] Panin I., Yagunov S., “$T$-spectra and Poincaré duality”, J. Reine Angew. Math., 617 (2008), 193–213 | MR | Zbl
[9] Poincaré H., “Analysis situs”, J. École Polytech., 1 (1895), 1–121 | MR
[10] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl
[11] Voevodsky V., “Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic”, Int. Math. Res. Not., 2002:7 (2002), 351–355 | DOI | MR | Zbl
[12] Voevodsky V., “Triangulated categories of motives over a field”, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl