Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_2_a5, author = {A. V. Malyutin}, title = {Operators in the spaces of pseudocharacters of braid groups}, journal = {Algebra i analiz}, pages = {136--165}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a5/} }
A. V. Malyutin. Operators in the spaces of pseudocharacters of braid groups. Algebra i analiz, Tome 21 (2009) no. 2, pp. 136-165. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a5/
[1] Bell R., Margalit D., “Injections of Artin groups”, Comment. Math. Helv., 82:4 (2007), 725–751 | MR | Zbl
[2] Bestvina M., Fujiwara K., “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl
[3] Braun K. S., Kogomologii grupp, Nauka, M., 1987 | MR
[4] Dyer J., Grossman E., “The automorphism groups of the braid groups”, Amer. J. Math., 103:6 (1981), 1151–1169 | DOI | MR | Zbl
[5] Gambaudo J.-M., Ghys É., “Commutators and diffeomorphisms of surfaces”, Ergodic Theory Dynam. Systems, 24:5 (2004), 1591–1617 | DOI | MR | Zbl
[6] Gambaudo J.-M., Ghys É., “Braids and signatures”, Bull. Soc. Math. France, 133:4 (2005), 541–579 | MR
[7] Honda K., Kazez W., Matić G., “Right-veering diffeomorphisms of compact surfaces with boundary. I”, Invent. Math., 169:2 (2007), 427–449 | DOI | MR | Zbl
[8] Honda K., Kazez W., Matić G., “Right-veering diffeomorphisms of compact surfaces with boundary. II”, Geom. Topol., 12:4 (2008), 2057–2094 | DOI | MR | Zbl
[9] Lin V., Braids and permutations, Eprint arxiv: org.math/0404528
[10] Malyutin A. V., “Zakruchennost (zamknutykh) kos”, Algebra i analiz, 16:5 (2004), 59–91 | MR | Zbl
[11] Malyutin A. V., “Psevdokharaktery grupp kos i prostota zatseplenii”, Algebra i analiz, 21:2 (2009), 113–135
[12] Markov A. A., “Osnovy algebraicheskoi teorii kos”, Tr. MIAN, 16, M., 1945, 3–53 | MR | Zbl