Schemes of relations of the finite projective plane, and their extensions
Algebra i analiz, Tome 21 (2009) no. 1, pp. 90-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are several schemes (coherent configurations) associated with a finite projective plane $\mathcal P$. In the paper, a new scheme is constructed, which, in a sense, contains all of them. It turns out that this scheme coincides with the 2-extension of the nonhomogeneous scheme of $\mathcal P$, and is uniquely determined up to similarity by the order $q$ of $\mathcal P$. Moreover, for $q\ge 3$ the rank of the scheme does not depend on $q$ and equals 416. The results obtained have interesting applications in the theory of multidimensional extensions of schemes and similarities.
Keywords: projective plane, Galois plane, scheme, graph.
@article{AA_2009_21_1_a3,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {Schemes of relations of the finite projective plane, and their extensions},
     journal = {Algebra i analiz},
     pages = {90--132},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_1_a3/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - Schemes of relations of the finite projective plane, and their extensions
JO  - Algebra i analiz
PY  - 2009
SP  - 90
EP  - 132
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_1_a3/
LA  - ru
ID  - AA_2009_21_1_a3
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T Schemes of relations of the finite projective plane, and their extensions
%J Algebra i analiz
%D 2009
%P 90-132
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_1_a3/
%G ru
%F AA_2009_21_1_a3
S. A. Evdokimov; I. N. Ponomarenko. Schemes of relations of the finite projective plane, and their extensions. Algebra i analiz, Tome 21 (2009) no. 1, pp. 90-132. http://geodesic.mathdoc.fr/item/AA_2009_21_1_a3/

[1] Evdokimov S. A., Shurovost i otdelimost assotsiativnykh skhem, Dis. $\dots$ dokt. fiz.-mat. nauk, SPbGU, SPb., 2004

[2] Evdokimov S. A., Ponomarenko I. N., “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[3] Evdokimov S. A., Ponomarenko I. N., “Koltsa konechnykh proektivnykh ploskostei i ikh izomorfizmy”, Zap. nauch. semin. POMI, 289, POMI, SPb., 2002, 207–213 | MR | Zbl

[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), 1, Springer-Verlag, Berlin, 1989 | MR

[5] Evdokimov S., Ponomarenko I., “On highly closed cellular algebras and highly closed isomorphisms”, Electron. J. Combin., 6 (1999), RP18, 31 pp. | MR

[6] Evdokimov S., Ponomarenko I., “Separability number and Schurity number of coherent configurations”, Electron. J. Combin., 7 (2000), RP31, 33 pp. | MR

[7] Evdokimov S., Karpinski M., Ponomarenko I., “On a new high-dimensional Weisfeiler–Lehman algorithm”, J. Algebraic Combin., 10:1 (1999), 29–45 | DOI | MR | Zbl

[8] Faradžev I. A., “Association schemes on the set of antiflags of a projective plane”, Discrete Math., 127 (1994), 171–179 | DOI | MR | Zbl

[9] Faradžev I. A., Klin M. H., Muzichuk M. E., “Cellular rings and groups of automorphisms of graphs”, Investigations in Algebraic Theory of Combinatorial Objects, Math. Appl. Soviet Ser., 84, Kluwer Acad. Publ., Dordrecht, 1994, 1–152 | MR | Zbl

[10] Glynn D. G., “Rings of geometries. I”, J. Combin. Theory Ser. A, 44:1 (1987), 34–48 | DOI | MR | Zbl

[11] Higman D. G., “Characterization of families of rank 3 permutation groups by the subdegree. I”, Arch. Math. (Basel), 21 (1970), 151–156 ; “II”, 353–361 | MR | Zbl | MR | Zbl

[12] Higman D. G., “Partial geometries, generalized quadrangles and strongly regular graphs”, Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Univ. Perugia, Perugia, 1970), Ist. Mat. Univ. Perugia, Perugia, 1971, 263–293 | MR

[13] Higman D. G., “Coherent algebras”, Linear Algebra Appl., 93 (1987), 209–239 | DOI | MR | Zbl

[14] Hughes D. R., Piper F. C., Projective planes, Grad. Texts in Math., 6, Springer-Verlag, Berlin, 1973 | MR | Zbl

[15] Klin M., Muzychuk M., Pech C., Woldar A., Zieschang P. H., “Association schemes on 28 points as mergings of a half-homogeneous coherent configuration”, European J. Combin., 28 (2007), 1994–2025 | DOI | MR | Zbl