Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$
Algebra i analiz, Tome 21 (2009) no. 1, pp. 74-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$ with coefficients in any bimodule is trivial. As a result, these algebras are segregated in any extension with a nilpotent kernel.
Keywords: associative conformal algebra, algebra of conformal endomorphisms, Hochschild cohomology.
@article{AA_2009_21_1_a2,
     author = {I. A. Dolguntseva},
     title = {Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$},
     journal = {Algebra i analiz},
     pages = {74--89},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_1_a2/}
}
TY  - JOUR
AU  - I. A. Dolguntseva
TI  - Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$
JO  - Algebra i analiz
PY  - 2009
SP  - 74
EP  - 89
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_1_a2/
LA  - ru
ID  - AA_2009_21_1_a2
ER  - 
%0 Journal Article
%A I. A. Dolguntseva
%T Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$
%J Algebra i analiz
%D 2009
%P 74-89
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_1_a2/
%G ru
%F AA_2009_21_1_a2
I. A. Dolguntseva. Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$. Algebra i analiz, Tome 21 (2009) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/AA_2009_21_1_a2/

[1] Hochschild G., “On the cohomology groups of an associative algebra”, Ann. of Math. (2), 46 (1945), 58–67 | DOI | MR | Zbl

[2] Kolesnikov P. S., “On the Wedderburn principal theorem in conformal algebras”, J. Algebra Appl., 6:1 (2007), 119–134 | DOI | MR | Zbl

[3] Kac V. G., Vertex algebras for beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998 | MR

[4] Beilinson A., Drinfeld V., Chiral algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[5] Bakalov B., D'Andrea A., Kac V. G., “Theory of finite pseudoalgebras”, Adv. Math., 162:1 (2001), 1–140 | DOI | MR | Zbl

[6] D'Andrea A., Kac V. G., “Structure theory of finite conformal algebras”, Selecta Math. (N.S.), 4 (1998), 377–418 | DOI | MR

[7] Bakalov B., Kac V. G., Voronov A. A., “Cohomology of conformal algebras”, Comm. Math. Phys., 200:3 (1999), 561–598 | DOI | MR | Zbl

[8] Dolguntseva I. A., “Kogomologii Khokhshilda dlya assotsiativnykh konformnykh algebr”, Algebra i logika, 46:6 (2007), 688–706 | MR | Zbl

[9] Kac V. G., “Formal distribution algebras and conformal algebras”, XII-th International Congress of Mathematical Physics (ICMP' 97) (Brisbane), Int. Press, Cambridge, MA, 1999, 80–97 | MR

[10] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217:2 (1999), 496–527 | DOI | MR | Zbl

[11] Bokut L. A., Fong Yu., Ke V.-F., Kolesnikov P. S., “Bazisy Grëbnera i Grëbnera–Shirshova v algebre i konformnye algebry”, Fundam. i prikl. mat., 6:3 (2000), 669–706 | MR | Zbl

[12] Kolesnikov P. S., “Associative conformal algebras with finite faithful representation”, Adv. Math., 202:2 (2006), 602–637 | DOI | MR | Zbl

[13] Retakh A., “Associative conformal algebras of linear growth”, J. Algebra, 237:2 (2001), 769–788 | DOI | MR | Zbl

[14] Bokut L. A., Fong Y., Ke W.-F., “Composition-diamond lemma for associative conformal algebras”, J. Algebra, 272:2 (2004), 739–774 | DOI | MR | Zbl

[15] Zelmanov E. I., “Idempotents in conformal algebras”, Proceedings of the Third International Algebra Conference (Tainan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, 257–266 | MR | Zbl