On $\theta$-centralizers of semiprime rings~(II)
Algebra i analiz, Tome 21 (2009) no. 1, pp. 61-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved: Let $R$ be a 2-torsion free semiprime ring, and let $T\colon R\to R$ be an additive mapping, related to a surjective homomorphism $\theta\colon R\to R$, such that $2T(x^2)=T(x)\theta(x)+\theta(x)T(x)$ for all $x\in R$. Then $T$ is both a left and a right $\theta$-centralizer.
Keywords: prime ring, semiprime ring, left(right) centralizer, left(right) $\theta$-centralizer, left(right) Jordan $\theta$-centralizer, derivation, Jordan derivation.
@article{AA_2009_21_1_a1,
     author = {M. N. Daif and M. S. Tammam El-Sayiad},
     title = {On $\theta$-centralizers of semiprime {rings~(II)}},
     journal = {Algebra i analiz},
     pages = {61--73},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_1_a1/}
}
TY  - JOUR
AU  - M. N. Daif
AU  - M. S. Tammam El-Sayiad
TI  - On $\theta$-centralizers of semiprime rings~(II)
JO  - Algebra i analiz
PY  - 2009
SP  - 61
EP  - 73
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_1_a1/
LA  - en
ID  - AA_2009_21_1_a1
ER  - 
%0 Journal Article
%A M. N. Daif
%A M. S. Tammam El-Sayiad
%T On $\theta$-centralizers of semiprime rings~(II)
%J Algebra i analiz
%D 2009
%P 61-73
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_1_a1/
%G en
%F AA_2009_21_1_a1
M. N. Daif; M. S. Tammam El-Sayiad. On $\theta$-centralizers of semiprime rings~(II). Algebra i analiz, Tome 21 (2009) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/AA_2009_21_1_a1/

[1] Albash E., “O $\tau$-tsentralizatorakh polupervichnykh kolets”, Sib. mat. zh., 48:2 (2007), 243–250 | MR | Zbl

[2] Brešar M., Vukman J., “Jordan derivations on prime rings”, Bull. Austral. Math. Soc., 37 (1988), 321–322 | DOI | MR | Zbl

[3] Brešar M., Vukman J., “On some additive mappings in rings with involution”, Aequationes Math., 38 (1989), 178–185 | DOI | MR | Zbl

[4] Brešar M., “Jordan derivations on semiprime rings”, Proc. Amer. Math. Soc., 104 (1988), 1003–1006 | DOI | MR | Zbl

[5] Brešar M., “Jordan mappings of semiprime rings”, J. Algebra, 127 (1989), 218–228 | DOI | MR | Zbl

[6] Cusack J., “Jordan derivations on rings”, Proc. Amer. Math. Soc., 53 (1975), 321–324 | DOI | MR | Zbl

[7] Herstein I. N., “Jordan derivations of prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1104–1110 | DOI | MR

[8] Herstein I. N., Rings with involution, Univ. of Chicago Press, Chicago, Il–London, 1976 | MR | Zbl

[9] Šemrl P., “Quadratic functionals and Jordan $\ast$-derivations”, Studia Math., 97 (1991), 157–165 | MR | Zbl

[10] Vukman J., “An identity related to centralizers in semiprime rings”, Comment. Math. Univ. Carolin., 40 (1999), 447–456 | MR | Zbl

[11] Zalar B., “On centralizers of semiprime rings”, Comment. Math. Univ. Carolin., 32 (1991), 609–614 | MR | Zbl