On generalized winding numbers
Algebra i analiz, Tome 20 (2008) no. 5, pp. 217-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^m$ be an oriented manifold, let $N^{m-1}$ be an oriented closed manifold, and let $p$ be a point in $M^m$. For a smooth map $f\colon N^{m-1}\to M^m$, $p\notin\operatorname{Im}f$, an invariant $\operatorname{awin}_p(f)$ is introduced, which can be regarded as a generalization of the classical winding number of a planar curve around a point. It is shown that $\operatorname{awin}_p$ estimates from below the number of passages of a wave front on $M$ through a given point $p\in M$ between two moments of time. The invariant $\operatorname{awin}_p$ makes it possible to formulate an analog of the complex analysis Cauchy integral formula for meromorphic functions on complex surfaces of genus exceeding one.
Keywords: Affine winding number, linking number, invariant.
@article{AA_2008_20_5_a8,
     author = {V. V. Chernov (Tchernov) and Y. B. Rudyak},
     title = {On generalized winding numbers},
     journal = {Algebra i analiz},
     pages = {217--233},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a8/}
}
TY  - JOUR
AU  - V. V. Chernov (Tchernov)
AU  - Y. B. Rudyak
TI  - On generalized winding numbers
JO  - Algebra i analiz
PY  - 2008
SP  - 217
EP  - 233
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a8/
LA  - en
ID  - AA_2008_20_5_a8
ER  - 
%0 Journal Article
%A V. V. Chernov (Tchernov)
%A Y. B. Rudyak
%T On generalized winding numbers
%J Algebra i analiz
%D 2008
%P 217-233
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a8/
%G en
%F AA_2008_20_5_a8
V. V. Chernov (Tchernov); Y. B. Rudyak. On generalized winding numbers. Algebra i analiz, Tome 20 (2008) no. 5, pp. 217-233. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a8/

[1] Andersen J. E., Mattes J., Reshetikhin N., “Quantization of the algebra of chord diagrams”, Math. Proc. Cambridge Philos. Soc., 124:3 (1998), 451–467 | DOI | MR | Zbl

[2] Andersen J. E., Mattes J., Reshetikhin N., “The Poisson structure on the moduli space of flat connections and chord diagrams”, Topology, 35:4 (1996), 1069–1083 | DOI | MR | Zbl

[3] Arnold V. I., “Invarianty i perestroiki frontov na ploskosti”, Tr. Mat. in-ta AN SSSR, 209, 1995, 14–64 | MR

[4] Chernov V. (Tchernov), “Shadows of wave fronts and Arnold–Bennequin type invariants of fronts on surfaces and orbifolds”, Differential and Symplectic Topology of Knots and Curves, Amer. Math. Soc. Transl. Ser. 2, 190, Amer. Math. Soc., Providence, RI, 1999, 153–184 | MR

[5] Chernov V. (Tchernov), Graded Poisson algebras on bordism groups of garlands and their applications, , 2006 math.GT/0608153

[6] Chernov V. (Tchernov), Rudyak Yu. B., “Toward a general theory of linking invariants”, Geom. Topol., 9 (2005), 1881–1913 ; http://www.maths.warwick.ac.uk/gt/GTVol9/paper42.abs.html | DOI | MR | Zbl

[7] Chernov V. (Tchernov), Rudyak Yu. B., Algebraic structures on generalized strings, , 2003 math.GT/0306140

[8] do Carmo M. P., Riemannian geometry, Birkhäuser Boston, Inc., Boston, MA, 1992 | MR | Zbl

[9] Goldman W., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl

[10] Goryunov V., “Local invariants of mappings of surfaces into three-space”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 223–255 | MR | Zbl

[11] Kaiser U., Link theory in manifolds, Lecture Notes in Math., 1669, Springer-Verlag, Berlin, 1997 | MR | Zbl

[12] Mikhalkin G., Polyak M., “Whitney formula in higher dimensions”, J. Differential Geom., 44:3 (1996), 583–594 | MR | Zbl

[13] Polyak M., “Shadows of Legendrian links and $J^+$-theory of curves”, Singularities (Oberwolfach, 1996), Progr. Math., 162, Birkhäuser, Basel, 1998, 435–458 | MR | Zbl

[14] Preissman A., “Quelques propriétés globales des espaces de Riemann”, Comment. Math. Helv., 15 (1943), 175–216 | DOI | MR

[15] Rudyak Yu. B., On Thom spectra, orientability, and cobordism, Springer-Verlag, Berlin etc., 1998 | MR | Zbl

[16] Shumakovich A., “Yavnye formuly dlya strannosti ploskoi krivoi”, Algebra i analiz, 7:3 (1995), 165–199 | MR | Zbl

[17] Shumakovitch A., “Shadow formula for the Vassiliev invariant of degree two”, Topology, 36:2 (1997), 449–469 | DOI | MR | Zbl

[18] Turaev V., “Shadow links and face models of statistical mechanics”, J. Differential Geom., 36:1 (1992), 35–74 | MR | Zbl

[19] Turaev V., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Sup. (4), 24:6 (1991), 635–704 | MR | Zbl

[20] Viro O., “Generic immersions of the circle to surfaces and the complex topology of real algebraic curves”, Topology of Real Algebraic Varieties and Related Topics, Amer. Math. Soc. Transl. Ser. 2, 173, Amer. Math. Soc., Providence, RI, 1996, 231–252 | MR | Zbl

[21] Whitney H., “On regular closed curves in the plane”, Compositio Math., 4 (1937), 276–284 | MR | Zbl