Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_5_a7, author = {A. V. Ustinov}, title = {On the number of solutions of the congruence $xy\equiv l$ $(\operatorname{mod}q)$ under the graph of a~twice continuously differentiable function}, journal = {Algebra i analiz}, pages = {186--216}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a7/} }
TY - JOUR AU - A. V. Ustinov TI - On the number of solutions of the congruence $xy\equiv l$ $(\operatorname{mod}q)$ under the graph of a~twice continuously differentiable function JO - Algebra i analiz PY - 2008 SP - 186 EP - 216 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a7/ LA - ru ID - AA_2008_20_5_a7 ER -
%0 Journal Article %A A. V. Ustinov %T On the number of solutions of the congruence $xy\equiv l$ $(\operatorname{mod}q)$ under the graph of a~twice continuously differentiable function %J Algebra i analiz %D 2008 %P 186-216 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a7/ %G ru %F AA_2008_20_5_a7
A. V. Ustinov. On the number of solutions of the congruence $xy\equiv l$ $(\operatorname{mod}q)$ under the graph of a~twice continuously differentiable function. Algebra i analiz, Tome 20 (2008) no. 5, pp. 186-216. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a7/
[1] Avdeeva M. O., Raspredelenie nepolnykh chastnykh v konechnykh tsepnykh drobyakh, Preprint DVO RAN, KhO IPM No 4, Dalnauka, Vladivostok, 2000
[2] Bykovskii V. A., “Asimptoticheskie svoistva tselykh tochek $(a_1,a_2)$, udovletvoryayuschikh sravneniyu $a_1a_2\equiv l({q})$”, Zap. nauch. semin. LOMI, 112, 1981, 5–25 | MR | Zbl
[3] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976 | MR
[4] Ustinov A. V., “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Zap. nauch. semin. POMI, 322, 2005, 186–211 | MR | Zbl
[5] Ustinov A. V., “Asimptoticheskoe povedenie pervogo i vtorogo momentov dlya chisla shagov v algoritme Evklida”, Izv. RAN. Ser. matem., 72:5 (2008), 189–224 | MR | Zbl
[6] Apostol T. M., Mathematical analysis, Addison-Wesley Publ. Co., Reading, MA etc., 1974 | MR | Zbl
[7] Estermann T., “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | MR | Zbl
[8] Graham S. W., Kolesnik G., van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser., 126, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[9] Hardy G. H., Wrighte E. M., An introduction to the theory of numbers, Clarendon Press, Oxford Univ. Press, New York, 1979 | MR | Zbl
[10] Heath-Brown D. R., “The fourth power moment of the Riemann zeta function”, Proc. London Math. Soc. (3), 38 (1979), 385–422 | DOI | MR | Zbl
[11] Heilbronn H., “On the average length of a class of finite continued fractions”, 1969 Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR
[12] Hooley C., “On the number of divisors of a quadratic polynomial”, Acta Math., 110 (1963), 97–114 | DOI | MR | Zbl
[13] Porter J. W., “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | MR | Zbl
[14] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., 46, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl