Continuous biorthogonality of the elliptic hypergeometric function
Algebra i analiz, Tome 20 (2008) no. 5, pp. 155-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of continuous biorthogonal functions related to an elliptic analog of the Gauss hypergeometric function is constructed. The key tools used for that are the elliptic beta integral and the integral Bailey chain introduced earlier by the author. The relationship with the Sklyanin algebra and elliptic analogs of the Faddeev modular double are discussed in detail.
Keywords: Completely integrable systems, special functions, Sklyanin algebra, Faddeev modular double.
@article{AA_2008_20_5_a6,
     author = {V. P. Spiridonov},
     title = {Continuous biorthogonality of the elliptic hypergeometric function},
     journal = {Algebra i analiz},
     pages = {155--185},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a6/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Continuous biorthogonality of the elliptic hypergeometric function
JO  - Algebra i analiz
PY  - 2008
SP  - 155
EP  - 185
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a6/
LA  - ru
ID  - AA_2008_20_5_a6
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Continuous biorthogonality of the elliptic hypergeometric function
%J Algebra i analiz
%D 2008
%P 155-185
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a6/
%G ru
%F AA_2008_20_5_a6
V. P. Spiridonov. Continuous biorthogonality of the elliptic hypergeometric function. Algebra i analiz, Tome 20 (2008) no. 5, pp. 155-185. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a6/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[2] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl

[3] Faddeev L. D., “Modular double of a quantum group”, Conference Moshé Flato 1999, vol. I (Dijon), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 149–156 | MR | Zbl

[4] Gorsky A. S., Zabrodin A. V., “Degenerations of Sklyanin algebra and Askey–Wilson polynomials”, J. Phys. A, 26 (1993), L635–L639 | DOI | MR | Zbl

[5] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl

[6] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_q(sl(2,\mathbb R ))$, the modular double and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225 (2002), 573–609 | DOI | MR | Zbl

[7] Komori Y., Hikami K., “Quantum integrability of the generalized elliptic Ruijsenaars models”, J. Phys. A, 30 (1997), 4341–4364 | DOI | MR | Zbl

[8] Manin Yu. I., “Sixth Painlevé equation, universal elliptic curve, and mirror of $P^2$”, Geometry of Differential Equations, Amer. Math. Soc. Transl. (2), 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl

[9] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2) (to appear)

[10] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180 | DOI | MR | Zbl

[11] Rosengren H., “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13 (2007), 131–166 | DOI | MR | Zbl

[12] Rosengren H., “Sklyanin invariant integration”, Int. Math. Res. Not., 2004, no. 60, 3207–3232 | DOI | MR | Zbl

[13] Ruijsenaars S. N. M., “Special functions associated with Calogero–Moser type quantum systems”, Integrable Systems: from Classical to Quantum (Montréal, QC, 1999), CRM Proc. Lecture Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 189–226 | MR | Zbl

[14] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. anal. i ego pril., 16:4 (1982), 27–34 | MR | Zbl

[15] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. Predstavleniya kvantovoi algebry”, Funkts. anal. i ego pril., 17:4 (1983), 34–48 | MR | Zbl

[16] Spiridonov V. P., “Ob ellipticheskoi beta-funktsii”, Uspekhi mat. nauk, 56:1 (2001), 181–182 | MR | Zbl

[17] Spiridonov V. P., “Theta hypergeometric integrals”, Algebra i analiz, 15:6 (2003), 161–215 | MR | Zbl

[18] Spiridonov V. P., “Derevo Beili dlya integralov”, Teor. i mat. fiz., 139:1 (2004), 104–111 | MR

[19] Spiridonov V. P., Ellipticheskie gipergeometricheskie funktsii, Dokt. dis., LTF OIYaI, 2004, 218 pp.; math.CA/0704.3099

[20] Spiridonov V. P., “Ellipticheskie gipergeometricheskie funktsii i modeli tipa Kalodzhero–Sazerlenda”, Teor. i mat. fiz., 150:2 (2007), 311–324 | MR | Zbl

[21] Takebe T., “Bethe ansatz for higher spin eight-vertex models”, J. Phys. A, 28 (1995), 6675–6706 | DOI | MR | Zbl

[22] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR

[23] Zhedanov A. S., “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101 (1999), 303–329 | DOI | MR | Zbl