On solvability of the Neumann problem in domains with peak
Algebra i analiz, Tome 20 (2008) no. 5, pp. 109-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Neumann problem is considered for a quasilinear elliptic equation of second order in a multi-dimensional domain with the vertex of an isolated peak on the boundary. Under certain assumptions, the study of the solvability of this problem is reduced to description of the dual to the Sobolev space $W^1_p(\Omega)$ or (in the case of a homogeneous equation with nonhomogeneous boundary condition) to the boundary trace space $TW^1_p(\Omega)$. This description involves Sobolev classes with negative smoothness exponent on Lipschitz domains or Lipschitz surfaces, and also some weighted classes of functions on the interval (0,1) of the real line. Main results are proved on the basis of the known explicit description of the spaces $TW^1_p(\Omega)$ on a domain with an outward or inward cusp on the boundary.
Keywords: Neumann problem, Sobolev spaces, domains with cusps, boundary traces, dual spaces.
@article{AA_2008_20_5_a5,
     author = {V. G. Maz'ya and S. V. Poborchiǐ},
     title = {On solvability of the {Neumann} problem in domains with peak},
     journal = {Algebra i analiz},
     pages = {109--154},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a5/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - S. V. Poborchiǐ
TI  - On solvability of the Neumann problem in domains with peak
JO  - Algebra i analiz
PY  - 2008
SP  - 109
EP  - 154
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a5/
LA  - ru
ID  - AA_2008_20_5_a5
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A S. V. Poborchiǐ
%T On solvability of the Neumann problem in domains with peak
%J Algebra i analiz
%D 2008
%P 109-154
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a5/
%G ru
%F AA_2008_20_5_a5
V. G. Maz'ya; S. V. Poborchiǐ. On solvability of the Neumann problem in domains with peak. Algebra i analiz, Tome 20 (2008) no. 5, pp. 109-154. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a5/

[1] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[2] Leray J., Lions J-L., “Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | MR | Zbl

[3] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, L., 1950, 256 pp.

[4] Mazya V. G., “O funktsiyakh s konechnym integralom Dirikhle v oblasti s vershinoi pika na granitse”, Zap. nauch. semin. LOMI, 126, 1983, 117–137 | MR

[5] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985, 416 pp. | MR

[6] Glushko V. P., “Ob oblastyakh, zvezdnykh otnositelno shara”, Dokl. AN SSSR, 144:6 (1962), 1215–1216 | Zbl

[7] Mazya V. G., Poborchii S. V., “Sledy funktsii iz prostranstv Soboleva na granitse oblasti s pikom”, Sovremennye problemy geometrii i analiza, Tr. In-ta mat. AN SSSR. Sib. otd., 14, Nauka, Novosibirsk, 1989, 182–208 | MR

[8] Mazya V. G., Poborchii S. V., Teoremy vlozheniya i prodolzheniya dlya funktsii v nelipshitsevykh oblastyakh, SPbGU, 2006, 399 pp.

[9] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[10] Poborchii S. V., “O nepreryvnosti operatora granichnogo sleda $W_p^1(\Omega)\to L_q(\partial\Omega)$ dlya oblasti s vneshnim pikom”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2005, no. 3, 51–60 | MR | Zbl

[11] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996, 480 pp. | MR

[12] Jones P. W., “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147:1–2 (1981), 71–88 | DOI | MR | Zbl