On homotopization of the unitary $K_1$-functor
Algebra i analiz, Tome 20 (2008) no. 5, pp. 99-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A unitary $K_1$-analog of the Karoubi–Villamayor functor is constructed, which solves the problem of homotopization of the unitary $K_1$-functor on the category of rings with involution.
Keywords: Ring with involution, unitary group, homotopization of a functor, Higman's trick, Karoubi–Villamayor functors, hyperbolic rings.
@article{AA_2008_20_5_a4,
     author = {V. I. Kopeǐko},
     title = {On homotopization of the unitary $K_1$-functor},
     journal = {Algebra i analiz},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a4/}
}
TY  - JOUR
AU  - V. I. Kopeǐko
TI  - On homotopization of the unitary $K_1$-functor
JO  - Algebra i analiz
PY  - 2008
SP  - 99
EP  - 108
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a4/
LA  - ru
ID  - AA_2008_20_5_a4
ER  - 
%0 Journal Article
%A V. I. Kopeǐko
%T On homotopization of the unitary $K_1$-functor
%J Algebra i analiz
%D 2008
%P 99-108
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a4/
%G ru
%F AA_2008_20_5_a4
V. I. Kopeǐko. On homotopization of the unitary $K_1$-functor. Algebra i analiz, Tome 20 (2008) no. 5, pp. 99-108. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a4/

[1] Karoubi M., Villamayor O., “Foncteurs $K^n$ en algèbre et en topologie”, C. R. Acad. Sci. Paris Sér. A-B, 269 (1969), A416–A419 | MR

[2] Rector D., “$K$-theory of a space with coefficients in a (discrete) ring”, Bull. Amer. Math. Soc., 77 (1971), 571–575 | DOI | MR | Zbl

[3] Strooker J., “Karoubi–Villamayor $K$-theory is not gomotopy Quillen theory”, Proc. Amer. Math. Soc., 73 (1979), 161–162 | DOI | MR | Zbl

[4] Weibel C., “Homotopy algebraic K-theory”, Algebraic $K$-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 461–488 | MR

[5] Weibel C., “Nil $K$-theory maps to cyclic homology”, Trans. Amer. Math. Soc., 303 (1987), 541–558 | DOI | MR | Zbl

[6] Weibel C., “$KV$-theory of categories”, Trans. Amer. Math. Soc., 267 (1981), 621–635 | DOI | MR | Zbl

[7] Hornbostel J., “$A^1$-representability of Hermitian $K$-theory and Witt groups”, Topology, 44 (2005), 661–687 | DOI | MR | Zbl

[8] Bak A., $K$-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[9] Hahn A. J., O'Meara O. T., The classical groups and $K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | MR | Zbl

[10] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[11] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | MR | Zbl

[12] Vorst T., “Polynomial extensions and excision for $K_1$”, Math. Ann., 244 (1979), 193–204 | DOI | MR | Zbl

[13] Karoubi M., “Le théoreme fondamental de la K-théorie hermitienne”, Ann. of Math. (2), 112 (1980), 259–282 | DOI | MR | Zbl