The spectrum of some compressions of unilateral shifts
Algebra i analiz, Tome 20 (2008) no. 5, pp. 83-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a star-shaped Banach space of analytic functions on the open unit disc $\mathbb D$. We assume that the unilateral shift $S\colon z\to zf$ and the backward shift $T\colon f\to\frac{f-f(0)}{z}$ are bounded on $E$ and that their spectrum is the closed unit disc. Let $M$ be a closed $z$-invariant subspace of $E$ such that $\dim(M/zM)=1$, and let $g\in M$. The main result of the paper shows that if $g$ has an analytic extension to $\mathbb D\cup D(\zeta,r)$ for some $r>0$, with $g(\zeta)\ne 0$, and if $S$ and $T$ satisfy the “nonquasianalytic condition” $$ \sum_{n\ge 0}\frac{\log\| S^n\|+\log\| T^n\|}{ 1+n^2}+\infty, $$ then $\zeta$ does not belong to the spectrum of the compression $S_M\colon f+M\to zf+M$ of the unilateral shift to the quotient space $E/M$. This shows in particular that $\operatorname{Spec}(S_M)=\{1\}$ for some $z$-invariant subspaces $M$ of weighted Hardy spaces constructed by N. K. Nikol'skiĭ in the seventies by using the Keldysh method.
Keywords: Unilateral shift, nonquasianalyticty condition, spectrum.
@article{AA_2008_20_5_a3,
     author = {S. Dubernet and J. Esterle},
     title = {The spectrum of some compressions of  unilateral shifts},
     journal = {Algebra i analiz},
     pages = {83--98},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a3/}
}
TY  - JOUR
AU  - S. Dubernet
AU  - J. Esterle
TI  - The spectrum of some compressions of  unilateral shifts
JO  - Algebra i analiz
PY  - 2008
SP  - 83
EP  - 98
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a3/
LA  - en
ID  - AA_2008_20_5_a3
ER  - 
%0 Journal Article
%A S. Dubernet
%A J. Esterle
%T The spectrum of some compressions of  unilateral shifts
%J Algebra i analiz
%D 2008
%P 83-98
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a3/
%G en
%F AA_2008_20_5_a3
S. Dubernet; J. Esterle. The spectrum of some compressions of  unilateral shifts. Algebra i analiz, Tome 20 (2008) no. 5, pp. 83-98. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a3/

[1] Atzmon A., “Maximal, minimal, and primary invariant subspaces”, J. Funct. Anal., 185 (2001), 155–213 | DOI | MR | Zbl

[2] Atzmon A., “Entire functions, invariant subspaces and Fourier transforms”, Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan, 1997, 37–52 | MR | Zbl

[3] Atzmon A., Weighted $L^p$ spaces of entire functions, Fourier transforms and invariant subspaces, Preprint

[4] Beurling A., On quasianalyticity and general distributions, Lecture Notes, Amer. Math. Soc., Stanford Univ., Stanford, CA, 1961

[5] Beurling A., “A critical topology in harmonic analysis on semigroups”, Acta Math., 112 (1964), 215–228 | DOI | MR | Zbl

[6] Borichev A., Hedenmalm H., Volberg A., “Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index”, J. Funct. Anal., 207 (2004), 111–160 | DOI | MR | Zbl

[7] Cartwright M., “Some uniqueness theorems”, Proc. London Math. Soc. (2), 41 (1936), 33–47 | DOI | Zbl

[8] Domar Y., “Entire functions of order $\le 1$, with bounds on both axes”, Ann. Acad. Sci. Fenn. Math., 22 (1997), 339–348 | MR | Zbl

[9] Domar Y., “Uniform boundedness in families related to subharmonic functions”, J. London Math. Soc. (2), 38:3 (1988), 485–491 | MR | Zbl

[10] Domar Y., “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3 (1957), 429–440 | DOI | MR

[11] Dubernet S., Représentations de groupes topologiques et études spectrale d'opérateurs de décalage unilatéraux et bilatéraux, Thèse, Bordeaux, Décembre 2005

[12] Dynkin E. M., “Funktsii s zadannoi otsenkoi $\partial f/\partial \bar z$ i teorema N. Levinsona”, Mat. cb., 89(131):2 (1972), 182–190 | MR

[13] Esterle J., Volberg A., “Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences”, Ann. Sci. École Norm. Sup. (4), 35 (2002), 185–230 | MR | Zbl

[14] Esterle J., Volberg A., “Analytic left-invariant subspaces of weighted Hilbert spaces of sequences”, J. Operator Theory, 45 (2001), 265–301 | MR | Zbl

[15] Gurarii V. P., “K teoreme N. Levinsona o normalnykh semeistvakh analiticheskikh funktsii”, Zap. nauch. semin. LOMI, 19, 1970, 215–220 | MR | Zbl

[16] Koosis P., The logarithmic integral. I , Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[17] Levinson N., “On the non-vanishing of some functions”, Proc. Nat. Acad. Sci., 22 (1936), 228–229 | DOI | Zbl

[18] Levinson N., Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., Providence, RI, 1940 | MR | Zbl

[19] Lomonosov V. I., Lyubich Yu. I., Matsaev V. I., “Dvoistvennost spektralnykh podprostranstv i usloviya otdelimosti spektra ogranichennogo lineinogo operatora”, Dokl. AN SSSR, 216:4 (1974), 737–739 | MR | Zbl

[20] Nikolskii N. K., Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Tr. Mat. in-ta AN SSSR, 120, 1974, 270 pp. | MR

[21] Rickart C. R., General theory of Banach algebras, D. van Nostrand Co., Inc., Princeton, NJ etc., 1960 | MR | Zbl

[22] Rudin W., Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York etc., 1973 | MR | Zbl

[23] Sjoberg N., Comp. Rend. IX Congr. des Math. Scan. (Helsingfors 1938)

[24] Richter S., “Invariant subspaces in Banach spaces of analytic functions”, Trans. Amer. Math. Soc., 304 (1987), 585–616 | DOI | MR | Zbl

[25] Zarrabi M., Classes de fonctions non-quasianalytiques et existence de sous-espaces invariants, Cours de D.E.A. Bordeaux (printemps 2001)