Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_5_a2, author = {D. Yu. Grigoriev and A. L. Chistov}, title = {Complexity of the {Standard} {Basis} of a~$D${-Module}}, journal = {Algebra i analiz}, pages = {41--82}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a2/} }
D. Yu. Grigoriev; A. L. Chistov. Complexity of the Standard Basis of a~$D$-Module. Algebra i analiz, Tome 20 (2008) no. 5, pp. 41-82. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a2/
[1] Bayer D. A., The division algorithm and the Hilbert scheme, Ph. D. Thesis, Harvard, 1982
[2] Chistov A., Grigor'ev D., “Complexity of quantifier elimination in the theory of algebraically closed fields”, Mathematical Foundations of Computer Science (Prague, 1984), Lecture Notes in Comput. Sci., 176, Springer, Berlin, 1984, 17–31 | MR
[3] Cox D., Little J., O'Shea D., Using algebraic geometry, Grad. Texts in Math., 185, Springer-Verlag, New York, 1998 | MR | Zbl
[4] Dubé T., “The structure of polynomial ideals and Gröbner bases”, SIAM J. Comput., 19 (1990), 750–775 | DOI | MR
[5] Galligo A., “Some algorithmic questions on ideals of differential operators”, EUROCAL' 85, vol. 2 (Linz, 1985), Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, 413–421 | MR
[6] Giusti M., “Some effectivity problems in polynomial ideal theory”, EUROSAM 84 (Cambridge, 1984), Lecture Notes in Comput. Sci., 174, Springer, Berlin, 1984, 159–171 | MR
[7] Grigoriev D., “Weak Bézout inequality for D-modules”, J. Complexity, 21 (2005), 532–542 | DOI | MR | Zbl
[8] Hermann G., “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”, Math. Ann., 95 (1926), 736–788 | DOI | MR | Zbl
[9] Janet M., “Les modules de formes algébriques et la théorie générale des systèmes différentiels”, Ann. Sci. École Norm. Sup. (3), 41 (1924), 27–65 | MR | Zbl
[10] Li H., Noncommutative Gröbner bases and filtered-graded transfer, Lecture Notes in Math., 1795, Springer-Verlag, Berlin, 2002 | MR
[11] Macaulay F. S., “Some properties of enumeration in the theory of modular systems”, Proc. London Math. Soc., 26 (1927), 531–555 | DOI | Zbl
[12] Möller H., Mora F., “Upper and lower bounds for the degree of Groebner bases”, EUROSAM 84 (Cambridge, 1984), Lecture Notes in Comput. Sci., 174, Springer, Berlin, 1984, 172–183 | MR
[13] Ritter G., Weispfenning V., “On the number of term orders”, Appl. Algebra Engrg. Comm. Comput., 2 (1991), 55–79 | DOI | MR | Zbl
[14] Schwarz F., “Janet bases for symmetry groups”, Gröbner Bases and Applications (Linz, 1998), London Math. Soc. Lecture Note Ser., 251, Cambridge Univ. Press, Cambridge, 1998, 221–234 | MR | Zbl
[15] Yap C. K., “A new lower bound construction for commutative Thue systems with applications”, J. Symbolic Comput., 12 (1991), 1–27 | DOI | MR | Zbl