Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_5_a1, author = {N. A. Vavilov}, title = {Numerology of square equations}, journal = {Algebra i analiz}, pages = {9--40}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a1/} }
N. A. Vavilov. Numerology of square equations. Algebra i analiz, Tome 20 (2008) no. 5, pp. 9-40. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a1/
[1] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR
[2] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl
[3] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR
[4] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR
[5] Vavilov N. A., “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz (to appear)
[6] Vavilov N. A., Gavrilovich M. R., “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl
[7] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl
[8] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauch. semin. POMI, 338, 2006, 5–68 | Zbl
[9] Vavilov N. A., Nikolenko S. I., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR
[10] Vavilov N. A., Perelman E. Ya., “Polivektornoe predstavlenie $\mathrm{GL}_n$”, Zap. nauch. semin. POMI, 338, 2006, 69–97 | MR | Zbl
[11] Vavilov N. A., Plotkin E. B., Stepanov A. V., “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl
[12] Vavilov N. A., Kharchev N. P., “Orbity stabilizatorov podsistem”, Zap. nauch. semin. POMI, 338, 2006, 98–124 | MR | Zbl
[13] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR
[14] Springer T. A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR
[15] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[16] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$. I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[17] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl
[18] Carter R. W., Simple groups of Lie type, 2nd ed., Wiley, New York, 1989 | MR | Zbl
[19] Cohen A. M., Cooperstein B. N., “A characterization of some geometries of Lie type”, Geom. Dedicata, 15:1 (1983), 73–105 | DOI | MR | Zbl
[20] Cohen A. M., Cooperstein B. N., “The 2-spaces of the standard $\mathrm E_6(q)$-module”, Geom. Dedicata, 25:1–3 (1988), 467–480 | MR | Zbl
[21] Cohen A. M., Cushman R. H., “Gröbner bases and standard monomial theory”, Computational Algebraic Geometry (Nice, 1992), Progr. Math., 109, Birkhäuser Boston, Boston, MA, 1993, 41–60 | MR | Zbl
[22] Cooperstein B. N., “A characterization of some Lie incidence structures”, Geom. Dedicata, 6:2 (1977), 205–258 | DOI | MR | Zbl
[23] Cooperstein B. N., “The geometry of root subgroups in exceptional groups. I, II”, Geom. Dedicata, 8:3 (1979), 317–381 ; 15:1 (1983), 1–45 | DOI | MR | Zbl | DOI | MR | Zbl
[24] Cooperstein B. N., “The fifty-six-dimensional module for $\mathrm E_7$. I. A four form for $\mathrm E_7$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl
[25] Faulkner J. R., Ferrar J. C., “Exceptional Lie algebras and related algebraic and geometric structures”, Bull. London Math. Soc., 9 (1977), 1–35 | DOI | MR | Zbl
[26] Harebov A. L., Vavilov N. A., “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl
[27] Haris S. J., “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93:1 (1971), 75–106 | DOI | MR | Zbl
[28] Iliev A., Manivel L., “On the Chow ring of the Cayley plane”, Compositio Math., 141 (2005), 146–160 | DOI | MR | Zbl
[29] Kaji H., Yasukura O., “Projective geometry of Freudenthal's varieties of certain type”, Michigan Math. J., 52:3 (2004), 515–542 | DOI | MR | Zbl
[30] Lakshmibai V., Musili C., Seshadri C. S., “Geometry of G/P. III. Standard monomial theory for a quasi-minuscule $P$”, Proc. Indian Acad. Sci. Sect. A, 88:3 (1979), 93–177 | MR | Zbl
[31] Lakshmibai V., Musili C., Seshadri C. S., “Geometry of G/P. IV. Standard monomial theory for classical types”, Proc. Indian Acad. Sci. Sect. A, 88:4 (1979), 279–362 | DOI | MR | Zbl
[32] Lakshmibai V., Seshadri C. S., “Geometry of G/P. II. The work of de Concini and Procesi and the basic conjectures”, Proc. Indian Acad. Sci. Sect. A, 87:2 (1978), 1–54 | DOI | MR | Zbl
[33] Lakshmibai V., Seshadri C. S., “Geometry of G/P. V”, J. Algebra, 100 (1986), 462–557 | DOI | MR | Zbl
[34] Lakshmibai V., Seshadri C. S., “Standard monomial theory”, Hyderabad Conf. on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 279–322 | MR | Zbl
[35] Lakshmibai V., Weyman J., “Multiplicities of points on a Schubert variety in a minuscule $G/P$”, Adv. Math., 84 (1990), 179–208 | DOI | MR | Zbl
[36] Lichtenstein W., “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl
[37] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[38] Nikolenko S., Semenov N., Chow ring structure made simple, , 2006, 1–17 arXiv:math. AG/0606335
[39] Panyushev D. I., “The actions of a maximal torus on orbits of highest weight vectors”, J. Algebra, 212:2 (1999), 683–702 | DOI | MR | Zbl
[40] Petrov V., Semenov N., Zainoulline K., Zero cycles on a twisted Cayley plane, , 2005, 1–15 arXiv:math. AG/0508200v2 | MR
[41] Plotkin E. B., “On the stability of the $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl
[42] Plotkin E., Semenov A., Vavilov N., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[43] Seshadri C. S., “Geometry of $G/P$. I. Theory of standard monomials for minuscule representations”, C. P. Ramanujam — a Tribute, Tata Inst. Fund. Res. Stud. in Math., 8, Springer, Berlin–New York, 1978, 207–239 | MR
[44] Stein M. R., “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl
[45] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[46] Vavilov N., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl
[47] Vavilov N., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104:1 (2000), 201–250 | MR | Zbl
[48] Vavilov N. A., “Do it yourself structure constants for Lie algebras of types $\mathrm E_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl
[49] Vavilov N., “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl
[50] Vavilov N., Plotkin E., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl