Lipschitz classification of functions on a~H\"older triangle
Algebra i analiz, Tome 20 (2008) no. 5, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Hölder triangle is studied. For this problem, the “moduli” are described completely in certain combinatorial terms.
Keywords: Lipschitz classification, quasihomogeneous polynomials, Hölder triangle, moduli.
@article{AA_2008_20_5_a0,
     author = {L. Birbrair and A. Fernandes and D. Panazzolo},
     title = {Lipschitz classification of functions on {a~H\"older} triangle},
     journal = {Algebra i analiz},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/}
}
TY  - JOUR
AU  - L. Birbrair
AU  - A. Fernandes
AU  - D. Panazzolo
TI  - Lipschitz classification of functions on a~H\"older triangle
JO  - Algebra i analiz
PY  - 2008
SP  - 1
EP  - 9
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/
LA  - en
ID  - AA_2008_20_5_a0
ER  - 
%0 Journal Article
%A L. Birbrair
%A A. Fernandes
%A D. Panazzolo
%T Lipschitz classification of functions on a~H\"older triangle
%J Algebra i analiz
%D 2008
%P 1-9
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/
%G en
%F AA_2008_20_5_a0
L. Birbrair; A. Fernandes; D. Panazzolo. Lipschitz classification of functions on a~H\"older triangle. Algebra i analiz, Tome 20 (2008) no. 5, pp. 1-9. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/

[1] Birbrair L., “Local bi-Lipschitz classification of 2-dimensional semialgebraic sets”, Houston J. Math., 25:3 (1999), 453–472 | MR | Zbl

[2] Benedetti R., Shiota M., “Finiteness of semialgebraic types of polynomial functions”, Math. Z., 208:4 (1991), 589–596 | DOI | MR | Zbl

[3] Birbrair L., Costa J., Fernandes A., Ruas M., “$\mathcal{K}$-bi-Lipschitz equivalence of real function-germs”, Proc. Amer. Math. Soc., 135:4 (2007), 1089–1095 | DOI | MR | Zbl

[4] Fukuda T., “Types topologiques des polynômes”, Inst. Hautes Études Sci. Publ. Math., 1976, no. 46, 87–106 | DOI | MR | Zbl

[5] Henry J.-P., Parusinski A., “Existence of moduli for bi-Lipschitz equivalence of analytic functions”, Compositio Math., 136:2 (2003), 217–235 | DOI | MR | Zbl

[6] Mostowski T., Lipschitz equisingularity, Dissertationes Math., 243, 1985, 46 pp. | MR | Zbl

[7] Valette G., “A bilipschitz version of Hardt's theorem”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 895–900 | MR | Zbl