Mots-clés : Hölder triangle, moduli.
@article{AA_2008_20_5_a0,
author = {L. Birbrair and A. Fernandes and D. Panazzolo},
title = {Lipschitz classification of functions on {a~H\"older} triangle},
journal = {Algebra i analiz},
pages = {1--9},
year = {2008},
volume = {20},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/}
}
L. Birbrair; A. Fernandes; D. Panazzolo. Lipschitz classification of functions on a Hölder triangle. Algebra i analiz, Tome 20 (2008) no. 5, pp. 1-9. http://geodesic.mathdoc.fr/item/AA_2008_20_5_a0/
[1] Birbrair L., “Local bi-Lipschitz classification of 2-dimensional semialgebraic sets”, Houston J. Math., 25:3 (1999), 453–472 | MR | Zbl
[2] Benedetti R., Shiota M., “Finiteness of semialgebraic types of polynomial functions”, Math. Z., 208:4 (1991), 589–596 | DOI | MR | Zbl
[3] Birbrair L., Costa J., Fernandes A., Ruas M., “$\mathcal{K}$-bi-Lipschitz equivalence of real function-germs”, Proc. Amer. Math. Soc., 135:4 (2007), 1089–1095 | DOI | MR | Zbl
[4] Fukuda T., “Types topologiques des polynômes”, Inst. Hautes Études Sci. Publ. Math., 1976, no. 46, 87–106 | DOI | MR | Zbl
[5] Henry J.-P., Parusinski A., “Existence of moduli for bi-Lipschitz equivalence of analytic functions”, Compositio Math., 136:2 (2003), 217–235 | DOI | MR | Zbl
[6] Mostowski T., Lipschitz equisingularity, Dissertationes Math., 243, 1985, 46 pp. | MR | Zbl
[7] Valette G., “A bilipschitz version of Hardt's theorem”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 895–900 | MR | Zbl