On Fourier transforms of functions of Nevanlinna class in a half-plane
Algebra i analiz, Tome 20 (2008) no. 4, pp. 218-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a function holomorphic in the upper half-plane and belonging to the Nevanlinna class $N(\mathbb{C}_+)$. Assume that $$ \varlimsup_{y\to+\infty}\frac{\ln|f(iy)|}{y}\le 0 $$ and that the boundary values of $f$ on the real axis lie in $L^1(\mathbb{R})$. It is shown that if $\vert\widehat{f}(x)\vert\le\frac{1}{\lambda(|x|)}$, $x\in{\mathbb{R}_-}$, where $\widehat{f}$ is the Fourier transform of $f$ and $\lambda$ is a logarithmically convex positive function on ${\mathbb{R}_+}$, then the condition $\int_{1}^{+\infty}\frac{\ln \lambda(x)}{x^{3/2}}\,dx=+\infty$ implies that $\widehat{f}(x)=0$ for all $x\in{\mathbb{R}_-}$. Conversely, if one of the conditions listed above fails, then there exists $f\in N(\mathbb{C}_+) \cap L^1(\mathbb{R})$ with $\widehat{f}(x)\ne 0$, $x\in{\mathbb{R}_-}$.
Keywords: Function of bounded characteristic, Fourier transform.
@article{AA_2008_20_4_a7,
     author = {F. A. Shamoyan},
     title = {On {Fourier} transforms of functions of {Nevanlinna} class in a half-plane},
     journal = {Algebra i analiz},
     pages = {218--240},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a7/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - On Fourier transforms of functions of Nevanlinna class in a half-plane
JO  - Algebra i analiz
PY  - 2008
SP  - 218
EP  - 240
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a7/
LA  - ru
ID  - AA_2008_20_4_a7
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T On Fourier transforms of functions of Nevanlinna class in a half-plane
%J Algebra i analiz
%D 2008
%P 218-240
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_4_a7/
%G ru
%F AA_2008_20_4_a7
F. A. Shamoyan. On Fourier transforms of functions of Nevanlinna class in a half-plane. Algebra i analiz, Tome 20 (2008) no. 4, pp. 218-240. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a7/

[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[2] Duren P., Theory of $H^p$ spaces, Pure Appl. Math., 38, Acad. Press, New York–London, 1970 | MR

[3] Shamoyan F. A., “O preobrazovanii Fure funktsii ogranichennogo vida”, Nauchnaya konferentsiya, posvyaschennaya stoletiyu so dnya rozhdeniya akademika I. G. Petrovskogo, Tez. dokl., BGU, Bryansk, 2001, 27–28

[4] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[5] Kahane J.-P., Katznelson Y., “Sur le comportement radial des fonctions analytiques”, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971), A718–A719 | MR

[6] Shamoyan F. A., “Kharakteristika skorosti ubyvaniya koeffitsientov Fure funktsii ogranichennogo vida i klassy analiticheskikh funktsii s beskonechno differentsiruemymi granichnymi znacheniyami”, Sib. mat. zh., 36:4 (1995), 943–953 | MR | Zbl

[7] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[8] Dzhrbashyan M. M., Dzhrbashyan A. E., “Integralnoe predstavlenie dlya nekotorykh klassov analiticheskikh funktsii v poluploskosti”, Dokl. AN SSSR, 285:3 (1985), 547–550 | MR | Zbl

[9] Burbaki N., Funktsii deistvitelnogo peremennogo, Nauka, M., 1965 | MR

[10] Viner N., Peli P., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964 | MR

[11] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[12] Dzhrbashyan M. M., “Ob asimptoticheskom priblizhenii tselymi funktsiyami v poluploskosti”, Dokl. AN SSSR, 111:4 (1956), 749–752 | Zbl

[13] Mergelyan S. N., “Vesovye priblizheniya mnogochlenami”, Uspekhi mat. nauk, 11:5 (1956), 107–152 | MR

[14] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[15] R.-Salinas B., “Functions with null moments”, Rev. Acad. Ci. Madrid, 49 (1955), 331–368 | MR