Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_4_a6, author = {V. E. Fedorov and O. A. Ruzakova}, title = {On solvability of perturbed {Sobolev} type equations}, journal = {Algebra i analiz}, pages = {189--217}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a6/} }
V. E. Fedorov; O. A. Ruzakova. On solvability of perturbed Sobolev type equations. Algebra i analiz, Tome 20 (2008) no. 4, pp. 189-217. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a6/
[1] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl
[2] Demidenko G. V., Uspenskii C. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998 | MR | Zbl
[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl
[4] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl
[5] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, Inc., New York, 1999 | MR | Zbl
[6] Fedorov V. E., “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR
[7] Fedorov V. E., “Golomorfnye razreshayuschie polugruppy uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Mat. sb., 195:8 (2004), 131–160 | MR | Zbl
[8] Fedorov V. E., “Obobschenie teoremy Khille–Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. mat. zh., 46:2 (2005), 426–448 | MR | Zbl
[9] Phillips R. S., “Perturbation theory for semi-groups of linear operators”, Trans. Amer. Math. Soc., 74 (1953), 199–221 | DOI | MR
[10] Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[11] Krein S. G., Khazan M. I., “Differentsialnye uravneniya v banakhovom prostranstve”, Itogi nauki i tekhn. Ser. Mat. analiz, 21, VINITI, M., 1983, 130–264 | MR
[12] Ivanov V. V., “Vozmuschenie ravnomerno summiruemykh polugrupp operatorov”, Dokl. AN SSSR, 250:2 (1980), 269–273 | MR | Zbl
[13] Ivanov V. V., “Ravnomerno summiruemye polugruppy operatorov. II. Vozmuschenie polugrupp”, Issledovaniya po geometrii “v tselom” i matematicheskomu analizu, Tr. In-ta mat. SO, 9, Nauka, Novosibirsk, 1987, 159–182 | MR
[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004
[15] Sviridyuk G. A., Manakova N. A., “Regulyarnye vozmuscheniya odnogo klassa lineinykh uravnenii sobolevskogo tipa”, Differents. uravneniya, 38:3 (2002), 423–425 | MR | Zbl
[16] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[17] Showalter R. E., “Existence and representation theorems for a semilinear Sobolev equation in Banach space”, SIAM J. Math. Anal., 3:3 (1972), 527–543 | DOI | MR | Zbl
[18] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[19] Plotnikov P. I., Starovoitov V. N., “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl
[20] Plotnikov P. I., Klepacheva A. V., “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. mat. zh., 42:3 (2001), 651–669 | MR | Zbl
[21] Fedorov V. E., Urazaeva A. V., “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. mat. shk., VGU, Voronezh, 2004, 161–172