Generalized Fesenko reciprocity map
Algebra i analiz, Tome 20 (2008) no. 4, pp. 118-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a natural continuation and generalization of the works of Fesenko and of the authors. Fesenko's theory is carried over to infinite $APF$-Galois extensions $L$ over a local field $K$ with a finite residue-class field $\kappa_K$ of $q=p^f$ elements, satisfying $\mathbf{\mu}_p(K^\mathrm{sep})\subset K$ and $K\subset L\subset K_{\varphi^d}$, where the residue-class degree $[\kappa_L:\kappa_K]$ is equal to $d$. More precisely, for such extensions $L/K$ and a fixed Lubin–Tate splitting $\varphi$ over $K$, a 1-cocycle $$ \mathbf{\Phi}_{L/K}^{(\varphi)}\colon\mathrm{Gal}(L/K)\to K^\times/N_{L_0/K}L_0^\times\times U_{\widetilde{\mathbb X}(L/K)}^\diamond/Y_{L/L_0} $$ where $L_0=L\cap K^{nr}$, is constructed, and its functorial and ramification-theoretic properties are studied. The case of $d=1$ recovers the theory of Fesenko.
Keywords: local fields, higher-ramification theory, $APF$-extensions Fontaine–Wintenberger field of norms, Fesenko reciprocity map, generalized Fesenko reciprocity map, non-abelian local class field theory.
@article{AA_2008_20_4_a4,
     author = {K. I. Ikeda and E. Serbest},
     title = {Generalized {Fesenko} reciprocity map},
     journal = {Algebra i analiz},
     pages = {118--159},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a4/}
}
TY  - JOUR
AU  - K. I. Ikeda
AU  - E. Serbest
TI  - Generalized Fesenko reciprocity map
JO  - Algebra i analiz
PY  - 2008
SP  - 118
EP  - 159
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a4/
LA  - en
ID  - AA_2008_20_4_a4
ER  - 
%0 Journal Article
%A K. I. Ikeda
%A E. Serbest
%T Generalized Fesenko reciprocity map
%J Algebra i analiz
%D 2008
%P 118-159
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_4_a4/
%G en
%F AA_2008_20_4_a4
K. I. Ikeda; E. Serbest. Generalized Fesenko reciprocity map. Algebra i analiz, Tome 20 (2008) no. 4, pp. 118-159. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a4/

[1] Fesenko I. B., “Local reciprocity cycles”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, eds. I. B. Fesenko, M. Kurihara, Geom. Topol. Publ., Coventry, 2000, 293–298 | MR | Zbl

[2] Fesenko I. B., “Nonabelian local reciprocity maps”, Class Field Theory — Its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, ed. K. Miyake, Math. Soc. Japan, Tokyo, 2001, 63–78 | MR | Zbl

[3] Fesenko I. B., “On the image of noncommutative local reciprocity map”, Homology, Homotopy Appl., 7 (2005), 53–62 | MR | Zbl

[4] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[5] Fontaine J.-M., Wintenberger J.-P., “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A Math., 288 (1979), 367–370 | MR | Zbl

[6] Fontaine J.-M., Wintenberger J.-P., “Extensions algébriques et corps des normes des extensions $APF$ des corps locaux”, C. R. Acad. Sci. Paris Sér. A Math., 288 (1979), 441–444 | MR | Zbl

[7] Gurevich A., Ph.D. Thesis, Humboldt Univ., Berlin, 1997

[8] Ikeda K. I., Serbest E., “Fesenko reciprocity map”, Algebra i analiz, 20:3 (2008), 112–162 | MR

[9] Ikeda K. I., Serbest E., Non-abelian local class field theory, Preprint, 2007

[10] Koch H., de Shalit E., “Metabelian local class field theory”, J. Reine Angew. Math., 478 (1996), 85–106 | MR | Zbl

[11] Laubie F., “Une théorie du corps de classes local non abélien”, Compositio Math., 143 (2007), 339–362 | MR | Zbl

[12] Wintenberger J.-P., “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 46 (1983), 59–89 | MR