The $\mathbb Z_p$-rank of a topological $K$-group
Algebra i analiz, Tome 20 (2008) no. 4, pp. 87-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete two-dimensional local field $K$ of mixed characteristic with finite second residue field is considered. It is shown that the rank of the quotient $U(1)K_2^{\mathrm{top}}K/T_K$, where $T_K$ is the closure of the torsion subgroup, is equal to the degree of the constant subfield of $K$ over $\mathbb Q_p$. Also, a basis of this quotient is constructed in the case where there exists a standard field $L$ containing $K$ such that $L/K$ is an unramified extension.
Keywords: Second topological $K$-group, local field, torsion.
@article{AA_2008_20_4_a3,
     author = {O. Yu. Ivanova},
     title = {The $\mathbb Z_p$-rank of a topological $K$-group},
     journal = {Algebra i analiz},
     pages = {87--117},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a3/}
}
TY  - JOUR
AU  - O. Yu. Ivanova
TI  - The $\mathbb Z_p$-rank of a topological $K$-group
JO  - Algebra i analiz
PY  - 2008
SP  - 87
EP  - 117
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a3/
LA  - ru
ID  - AA_2008_20_4_a3
ER  - 
%0 Journal Article
%A O. Yu. Ivanova
%T The $\mathbb Z_p$-rank of a topological $K$-group
%J Algebra i analiz
%D 2008
%P 87-117
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_4_a3/
%G ru
%F AA_2008_20_4_a3
O. Yu. Ivanova. The $\mathbb Z_p$-rank of a topological $K$-group. Algebra i analiz, Tome 20 (2008) no. 4, pp. 87-117. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a3/

[1] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[2] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[3] Serre J.-P., Local fields, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[4] Zhukov I. B., “Milnorovskie i topologicheskie $K$-gruppy mnogomernykh polnykh polei”, Algebra i analiz, 9:1 (1997), 98–147 | MR | Zbl

[5] Zhukov I. B, Madunts A. I., “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Tr. S.-Peterburg. mat. o-va, 3, 1995, 4–46 | MR | Zbl

[6] Zhukov I. B., Koroteev M. V., “Ustranenie vysshego vetvleniya”, Algebra i analiz, 11:6 (1999), 153–177 | MR

[7] Zhukov I., “Higher dimensional local fields”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 5–18 | MR | Zbl

[8] Hyodo O., “Wild ramification in the imperfect residue field case”, Galois Representations and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, 287–314 | MR

[9] Fesenko I., “Topological Milnor K-groups of higher local fields”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 61–74 | MR | Zbl

[10] Fesenko I. B., “Teoriya lokalnykh polei. Lokalnaya teoriya polei klassov. Mnogomernaya lokalnaya teoriya polei klassov”, Algebra i analiz, 4:3 (1992), 1–41 | MR

[11] Vostokov S., “Explicit formulas for the Hilbert symbol”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 81–89 | MR | Zbl

[12] Kato K., “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 26 (1979), 303–376 | MR | Zbl

[13] Ivanova O. Yu., “Topologicheskie K-gruppy dvumernykh lokalnykh polei”, Zap. nauch. semin. POMI, 343, 2007, 206–221 | MR