Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_4_a1, author = {N. A. Vavilov and S. I. Nikolenko}, title = {$\mathrm A_2$-proof of structure theorems for {Chevalley} groups of type~$\mathrm F_4$}, journal = {Algebra i analiz}, pages = {27--63}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/} }
TY - JOUR AU - N. A. Vavilov AU - S. I. Nikolenko TI - $\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$ JO - Algebra i analiz PY - 2008 SP - 27 EP - 63 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/ LA - ru ID - AA_2008_20_4_a1 ER -
N. A. Vavilov; S. I. Nikolenko. $\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$. Algebra i analiz, Tome 20 (2008) no. 4, pp. 27-63. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/
[1] Abe E., “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl
[2] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl
[3] Borevich Z. I., Vavilov N. A., “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR
[4] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR
[5] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl
[6] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR
[7] Vavilov N. A., Podgruppy rasschepimykh klassicheskikh grupp, Dokt. dis., LGU, L., 1987, s. 1–334
[8] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR
[9] Vavilov N. A., “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR
[10] Vavilov N. A., “Vychisleniya v isklyuchitelnykh gruppakh”, Vestn. Samar. un-ta, 2007:7, 11–24
[11] Vavilov N. A., “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz (to appear)
[12] Vavilov N. A., Gavrilovich M. R., “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl
[13] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl
[14] Vavilov N. A., Luzgarev A. Yu., “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR
[15] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauch. semin. POMI, 338, 2006, 5–68 | Zbl
[16] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. I, II,”, Zap. nauch. semin. LOMI, 94, 1979, 40–49 ; 114, 1982, 62–76 | MR | Zbl | MR | Zbl
[17] Vavilov N. A., Plotkin E. B., Stepanov A. V., “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl
[18] Golubchik I. Z., “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, Uspekhi mat. nauk, 28:3 (1973), 179–180 | MR | Zbl
[19] Golubchik I. Z., “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi mat. nauk, 30:6 (1975), 165 | Zbl
[20] Golubchik I. Z., “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Bashk. gos. ped. in-t, Ufa, 1985, 122–142 | MR
[21] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR
[22] Luzgarev A. Yu., “O nadgruppakh $\mathrm E(\mathrm E_6, R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauch. semin. POMI, 319, 2004, 216–243 | MR | Zbl
[23] Nesterov V. V., “Porozhdenie par korotkikh kornevykh podgrupp v gruppakh Shevalle”, Algebra i analiz, 16:6 (2004), 172–208 | MR
[24] Springer T. A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR
[25] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[26] Stepanov A. V., Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. dis., LGU, L., 1987, 1–112
[27] Stepanov A. V., “O normalnom stroenii polnoi lineinoi gruppy nad koltsom”, Zap. nauch. semin. LOMI, 236, 1997, 166–182 | Zbl
[28] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[29] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[30] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21:3 (1969), 474–494 | DOI | MR | Zbl
[31] Abe E., “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR
[32] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | MR
[33] Abe E., Hurley J., “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl
[34] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl
[35] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$. I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[36] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl
[37] Azad H., Barry M., Seitz G. M., “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl
[38] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969
[39] Bak A., “Nonabelian $\mathrm K$-theory: the nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4:4 (1991), 363–397 | DOI | MR | Zbl
[40] Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $\mathrm K_1$ are nilpotent by abelian”, K-Theory, 2008 (to appear) | MR
[41] Bak A., Vavilov N., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[42] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[43] Bak A., Hazrat R., Vavilov N., “Structure of hyperbolic unitary groups. II. Normal subgroups”, Algebra Colloq. (to appear)
[44] Bak A., Vavilov N., “Cubic form parameters” (to appear)
[45] Bass H., “Unitary algebraic K-theory”, Algebraic $\mathrm K$-Theory. III: Hermitian $\mathrm K$-Theory and Geometric Applications, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 343, Springer, Berlin, 1973, 57–265 | MR
[46] Carter R., Simple groups of Lie type, Pure Appl. Math., 28, John Wiley, London etc., 1972 | MR
[47] Cohen A. M., Cooperstein B. N., “The 2-spaces of the standard $\mathrm E_{6}(q)$-module”, Geom. Dedicata, 25:1–3 (1988), 467–480 | MR | Zbl
[48] Costa D. L., Keller G. E., “The $\mathrm E(2, A)$ sections of $\mathrm{SL}(2,A)$”, Ann. of Math. (2), 134:1 (1991), 159–188 | DOI | MR | Zbl
[49] Costa D. L., Keller G. E., “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1992), 51–105 | MR | Zbl
[50] Costa D. L., Keller G. E., “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl
[51] Hahn A. J., O'Meara O. T., The classical groups and $\mathrm K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[52] Hazrat R., “Dimension theory and non-stable $\mathrm K_1$ of quadratic modules”, K-Theory, 27 (2002), 293–328 | DOI | MR | Zbl
[53] Hazrat R., Vavilov N., “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[54] Hazrat R., Vavilov N., Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi), Preprint no. 5, Queen's Univ., Belfast, 2008, pp. 1–60
[55] Li Fu An, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica (N. S.), 3:3 (1987), 247–255 | MR
[56] Li Fu An, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR
[57] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[58] Plotkin E. B., “On the stability of the $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl
[59] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[60] Springer T. A., Linear algebraic groups, Progr. Math., 9, Birkhäuser, Boston, MA, 1981 | MR | Zbl
[61] Springer T. A., Veldkamp F. D., Octonions, Jordan algebras and exceptional groups, Springer-Verlag, Berlin, 2000 | Zbl
[62] Stein M. R., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl
[63] Stein M. R., “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl
[64] Steinbach A. I., Groups of Lie type generated by long root elements in $\mathrm F_4(K)$, Habilitationsschrift, Gießen, 2000
[65] Steinbach A. I., “Subgroups of the Chevalley groups of type $\mathrm F_4$ arising from a polar space”, Adv. Geom., 3 (2003), 73–100 | DOI | MR | Zbl
[66] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[67] Suzuki K., “On normal subgroups of twisted Chevalley groups over local rings”, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13:366–382 (1977), 238–249 | MR | Zbl
[68] Suzuki K., “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:2 (1995), 526–536 | DOI | MR | Zbl
[69] Taddei G., “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of Algebraic $\mathrm K$-Theory to Algebraic Geometry and Number Theory, Part II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | MR
[70] Vaserstein L. N., “On the normal subgroups of the $\mathrm{GL}_n$ over a ring”, Algebraic $\mathrm K$-Theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., 854, Springer, Berlin–New York, 1981, 456–465 | MR
[71] Vaserstein L. N., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | DOI | MR | Zbl
[72] Vaserstein L. N., “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl
[73] Vaserstein L. N., “Normal subgroups of symplectic groups over rings”, K-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl
[74] Vaserstein L. N., You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–105 | DOI | MR | Zbl
[75] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl
[76] Vavilov N. A., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl
[77] Vavilov N. A., “A third look at weight diagrams”, Ren. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl
[78] Vavilov N. A., “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl
[79] Vavilov N. A., “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl
[80] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR
[81] Waterhouse W. C., Introduction to affine group schemes, Grad. Texts in Math., 66, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl
[82] Wilson J. S., “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl
[83] Hazrat R., Petrov V., Vavilov N. A., “Relative subgroups in Chevalley groups”, K-Theory (to appear)
[84] Vavilov N. A., Stavrova A. K., “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauch. semin. POMI, 349, 2007, 30–52