$\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$
Algebra i analiz, Tome 20 (2008) no. 4, pp. 27-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new geometric proof is given for the standard description of subgroups in the Chevalley group $G=G(\mathrm{F}_4,R)$ of type $\mathrm{F}_4$ over a commutative ring $R$ that are normalized by the elementary subgroup $E(\mathrm{F}_4,R)$. There are two major approaches to the proof of such results. Localization proofs (Quillen, Suslin, Bak) are based on reduction in dimension. The first proofs of this type for exceptional groups were given by Abe, Suzuki, Taddei and Vaserstein, but they invoked the Chevalley simplicity theorem and reduction modulo the radical. At about the same time, the first author, Stepanov, and Plotkin developed a geometric approach, decomposition of unipotents, based on reduction in the rank of the group. This approach combines the methods introduced in the theory of classical groups by Wilson, Golubchik, and Suslin with ideas of Matsumoto and Stein coming from representation theory and K-theory. For classical groups in vector representations, the resulting proofs are quite straightforward, but their generalizations to exceptional groups required the explicit knowledge of the signs of action constants, and of equations satisfied by the orbit of the highest weight vector. They depend on the presence of high rank subgroups of types $\mathrm{A}_l$ or $\mathrm{D}_l$, such as $\mathrm{A}_5\le\mathrm{E}_6$ and $\mathrm{A}_7\le\mathrm{E}_7$. The first author and Gavrilovich introduced a new twist to the method of decomposition of unipotents, which made it possible to give an entirely elementary geometric proof (the proof from the Book) for Chevalley groups of types $\Phi=\mathrm{E}_6,\mathrm{E}_7$. This new proof, like the proofs for classical cases, relies upon embedding of $\mathrm{A}_2$. Unlike all previous proofs, neither results pertaining to the field case, nor explicit knowledge of structure constants and defining equations are ever used. In the present paper we show that, with some additional effort, we can make this proof work also for the case of $\Phi=\mathrm{F}_4$. Moreover, we establish some new facts about Chevalley groups of type $\mathrm{F}_4$ and their 27-dimensional representation.
Keywords: Chevalley group, elementary subgroup, normal subgroups, standard description, minimal module, parabolic subgroups, decomposition of unipotents, root element, orbit of the highest weight vector, the proof from the Book.
@article{AA_2008_20_4_a1,
     author = {N. A. Vavilov and S. I. Nikolenko},
     title = {$\mathrm A_2$-proof of structure theorems for {Chevalley} groups of type~$\mathrm F_4$},
     journal = {Algebra i analiz},
     pages = {27--63},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - S. I. Nikolenko
TI  - $\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$
JO  - Algebra i analiz
PY  - 2008
SP  - 27
EP  - 63
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/
LA  - ru
ID  - AA_2008_20_4_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A S. I. Nikolenko
%T $\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$
%J Algebra i analiz
%D 2008
%P 27-63
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/
%G ru
%F AA_2008_20_4_a1
N. A. Vavilov; S. I. Nikolenko. $\mathrm A_2$-proof of structure theorems for Chevalley groups of type~$\mathrm F_4$. Algebra i analiz, Tome 20 (2008) no. 4, pp. 27-63. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a1/

[1] Abe E., “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[3] Borevich Z. I., Vavilov N. A., “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR

[4] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[5] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[6] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR

[7] Vavilov N. A., Podgruppy rasschepimykh klassicheskikh grupp, Dokt. dis., LGU, L., 1987, s. 1–334

[8] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR

[9] Vavilov N. A., “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR

[10] Vavilov N. A., “Vychisleniya v isklyuchitelnykh gruppakh”, Vestn. Samar. un-ta, 2007:7, 11–24

[11] Vavilov N. A., “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz (to appear)

[12] Vavilov N. A., Gavrilovich M. R., “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[13] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[14] Vavilov N. A., Luzgarev A. Yu., “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR

[15] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauch. semin. POMI, 338, 2006, 5–68 | Zbl

[16] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle. I, II,”, Zap. nauch. semin. LOMI, 94, 1979, 40–49 ; 114, 1982, 62–76 | MR | Zbl | MR | Zbl

[17] Vavilov N. A., Plotkin E. B., Stepanov A. V., “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl

[18] Golubchik I. Z., “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, Uspekhi mat. nauk, 28:3 (1973), 179–180 | MR | Zbl

[19] Golubchik I. Z., “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi mat. nauk, 30:6 (1975), 165 | Zbl

[20] Golubchik I. Z., “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Bashk. gos. ped. in-t, Ufa, 1985, 122–142 | MR

[21] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[22] Luzgarev A. Yu., “O nadgruppakh $\mathrm E(\mathrm E_6, R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauch. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[23] Nesterov V. V., “Porozhdenie par korotkikh kornevykh podgrupp v gruppakh Shevalle”, Algebra i analiz, 16:6 (2004), 172–208 | MR

[24] Springer T. A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR

[25] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[26] Stepanov A. V., Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. dis., LGU, L., 1987, 1–112

[27] Stepanov A. V., “O normalnom stroenii polnoi lineinoi gruppy nad koltsom”, Zap. nauch. semin. LOMI, 236, 1997, 166–182 | Zbl

[28] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[29] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[30] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21:3 (1969), 474–494 | DOI | MR | Zbl

[31] Abe E., “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR

[32] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | MR

[33] Abe E., Hurley J., “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[34] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl

[35] Aschbacher M., “The 27-dimensional module for $\mathrm E_6$. I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[36] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[37] Azad H., Barry M., Seitz G. M., “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[38] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[39] Bak A., “Nonabelian $\mathrm K$-theory: the nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4:4 (1991), 363–397 | DOI | MR | Zbl

[40] Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $\mathrm K_1$ are nilpotent by abelian”, K-Theory, 2008 (to appear) | MR

[41] Bak A., Vavilov N., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[42] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[43] Bak A., Hazrat R., Vavilov N., “Structure of hyperbolic unitary groups. II. Normal subgroups”, Algebra Colloq. (to appear)

[44] Bak A., Vavilov N., “Cubic form parameters” (to appear)

[45] Bass H., “Unitary algebraic K-theory”, Algebraic $\mathrm K$-Theory. III: Hermitian $\mathrm K$-Theory and Geometric Applications, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 343, Springer, Berlin, 1973, 57–265 | MR

[46] Carter R., Simple groups of Lie type, Pure Appl. Math., 28, John Wiley, London etc., 1972 | MR

[47] Cohen A. M., Cooperstein B. N., “The 2-spaces of the standard $\mathrm E_{6}(q)$-module”, Geom. Dedicata, 25:1–3 (1988), 467–480 | MR | Zbl

[48] Costa D. L., Keller G. E., “The $\mathrm E(2, A)$ sections of $\mathrm{SL}(2,A)$”, Ann. of Math. (2), 134:1 (1991), 159–188 | DOI | MR | Zbl

[49] Costa D. L., Keller G. E., “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1992), 51–105 | MR | Zbl

[50] Costa D. L., Keller G. E., “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[51] Hahn A. J., O'Meara O. T., The classical groups and $\mathrm K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[52] Hazrat R., “Dimension theory and non-stable $\mathrm K_1$ of quadratic modules”, K-Theory, 27 (2002), 293–328 | DOI | MR | Zbl

[53] Hazrat R., Vavilov N., “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[54] Hazrat R., Vavilov N., Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi), Preprint no. 5, Queen's Univ., Belfast, 2008, pp. 1–60

[55] Li Fu An, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica (N. S.), 3:3 (1987), 247–255 | MR

[56] Li Fu An, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR

[57] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[58] Plotkin E. B., “On the stability of the $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[59] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[60] Springer T. A., Linear algebraic groups, Progr. Math., 9, Birkhäuser, Boston, MA, 1981 | MR | Zbl

[61] Springer T. A., Veldkamp F. D., Octonions, Jordan algebras and exceptional groups, Springer-Verlag, Berlin, 2000 | Zbl

[62] Stein M. R., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[63] Stein M. R., “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[64] Steinbach A. I., Groups of Lie type generated by long root elements in $\mathrm F_4(K)$, Habilitationsschrift, Gießen, 2000

[65] Steinbach A. I., “Subgroups of the Chevalley groups of type $\mathrm F_4$ arising from a polar space”, Adv. Geom., 3 (2003), 73–100 | DOI | MR | Zbl

[66] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[67] Suzuki K., “On normal subgroups of twisted Chevalley groups over local rings”, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13:366–382 (1977), 238–249 | MR | Zbl

[68] Suzuki K., “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:2 (1995), 526–536 | DOI | MR | Zbl

[69] Taddei G., “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of Algebraic $\mathrm K$-Theory to Algebraic Geometry and Number Theory, Part II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | MR

[70] Vaserstein L. N., “On the normal subgroups of the $\mathrm{GL}_n$ over a ring”, Algebraic $\mathrm K$-Theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., 854, Springer, Berlin–New York, 1981, 456–465 | MR

[71] Vaserstein L. N., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | DOI | MR | Zbl

[72] Vaserstein L. N., “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[73] Vaserstein L. N., “Normal subgroups of symplectic groups over rings”, K-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[74] Vaserstein L. N., You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–105 | DOI | MR | Zbl

[75] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[76] Vavilov N. A., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl

[77] Vavilov N. A., “A third look at weight diagrams”, Ren. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[78] Vavilov N. A., “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[79] Vavilov N. A., “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[80] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR

[81] Waterhouse W. C., Introduction to affine group schemes, Grad. Texts in Math., 66, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[82] Wilson J. S., “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl

[83] Hazrat R., Petrov V., Vavilov N. A., “Relative subgroups in Chevalley groups”, K-Theory (to appear)

[84] Vavilov N. A., Stavrova A. K., “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauch. semin. POMI, 349, 2007, 30–52