Modulus of continuity of operator functions
Algebra i analiz, Tome 20 (2008) no. 3, pp. 224-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be bounded selfadjoint operators on a separable Hilbert space, and let $f$ be a continuous function defined on an interval $[a,b]$ containing the spectra of $A$ and $B$. If $\omega _f$ denotes the modulus of continuity of $f$, then $$ \|f(A)-f(B)\|\leq 4\Big[\log\Big(\frac{b-a}{\|A-B\|}+1\Big)+1\Big]^2\cdot\omega _f(\|A-B\|). $$ A similar result is true for unbounded selfadjoint operators, under some natural assumptions on the growth of $f$.
Keywords: Selfadjoint operator, operator function, modulas of continuity.
@article{AA_2008_20_3_a8,
     author = {Yu. B. Farforovskaya and L. Nikolskaya},
     title = {Modulus of continuity of operator functions},
     journal = {Algebra i analiz},
     pages = {224--242},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a8/}
}
TY  - JOUR
AU  - Yu. B. Farforovskaya
AU  - L. Nikolskaya
TI  - Modulus of continuity of operator functions
JO  - Algebra i analiz
PY  - 2008
SP  - 224
EP  - 242
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a8/
LA  - en
ID  - AA_2008_20_3_a8
ER  - 
%0 Journal Article
%A Yu. B. Farforovskaya
%A L. Nikolskaya
%T Modulus of continuity of operator functions
%J Algebra i analiz
%D 2008
%P 224-242
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a8/
%G en
%F AA_2008_20_3_a8
Yu. B. Farforovskaya; L. Nikolskaya. Modulus of continuity of operator functions. Algebra i analiz, Tome 20 (2008) no. 3, pp. 224-242. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a8/

[1] Peller V. V., “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 | DOI | MR | Zbl

[2] Peller V. V., “Hankel operators in the perturbation theory of unbounded selfadjoint operators”, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR

[3] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsessy, Probl. mat. fiz., 1, LGU, L., 1966, 33–67 | MR

[4] Bennett G., “Schur multipliers”, Duke Math. J., 44 (1977), 603–639 | DOI | MR | Zbl

[5] Nikolskaya L. N., Farforovskaya Yu. B., “Tëplitsevy i gankelevy matritsy kak multiplikatory Adamara–Shura”, Algebra i analiz, 15:6 (2003), 141–160 | MR

[6] Matsaev V. N., “Ob odnom klasse vpolne nepreryvnykh operatorov”, Dokl. AN SSSR, 139:3 (1961), 548–551 | Zbl

[7] Polya G., “Remarks on characteristic functions”, Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability (1945, 1946), Univ. California Press, Berkeley–Los Angeles, 1949, 115–123 | MR

[8] Bochner S., “Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse”, Math. Ann., 108 (1933), 378–410 | DOI | MR | Zbl

[9] Herglotz G., “Über Potenzreihen mit positivem, reellem Teil im Einheitskreis”, S.-B. Sächs. Akad. Wiss., 63 (1911), 501–511 | Zbl

[10] Schur J., “Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen”, J. Reine Angew. Math., 140 (1911), 1–28 | Zbl

[11] Helson H., Harmonic analysis, Addison-Wesley Publ. Co., Reading, MA, 1983 | MR | Zbl

[12] Farforovskaya Yu. B., “Dvoinye operatornye integraly i ikh otsenki v ravnomernoi norme”, Zap. nauch. semin. POMI, 232, 1996, 148–173 | Zbl

[13] Farforovskaya Yu. B., “Otsenka normy $|f(B)-f(A)|$ dlya samosopryazhennykh operatorov $A$ i $B$”, Zap. nauch. semin. LOMI, 56, 1976, 143–162 | MR | Zbl

[14] Farforovskaya Yu. B., “Otsenki kommutatorov normalnykh operatorov”, Algebra i analiz, 11:4 (1999), 204–221 | MR | Zbl

[15] Farforovskaya Yu. B., Nikolskaia L., “An inequality for commutators of normal operators”, Acta Sci. Math. (Szeged), 71 (2005), 751–765 | MR | Zbl