Absolutely continuous spectrum of Stark type operators
Algebra i analiz, Tome 20 (2008) no. 3, pp. 197-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new conditions are obtained for the absolutely continuous spectrum of a Stark operator to fill the entire real line.
Keywords: Stark operator, spectrum, Weyl function, $BF$-type estimates.
@article{AA_2008_20_3_a7,
     author = {A. A. Pozharskii},
     title = {Absolutely continuous spectrum of {Stark} type operators},
     journal = {Algebra i analiz},
     pages = {197--223},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/}
}
TY  - JOUR
AU  - A. A. Pozharskii
TI  - Absolutely continuous spectrum of Stark type operators
JO  - Algebra i analiz
PY  - 2008
SP  - 197
EP  - 223
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/
LA  - ru
ID  - AA_2008_20_3_a7
ER  - 
%0 Journal Article
%A A. A. Pozharskii
%T Absolutely continuous spectrum of Stark type operators
%J Algebra i analiz
%D 2008
%P 197-223
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/
%G ru
%F AA_2008_20_3_a7
A. A. Pozharskii. Absolutely continuous spectrum of Stark type operators. Algebra i analiz, Tome 20 (2008) no. 3, pp. 197-223. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/

[1] Buslaev V. S., Faddeev L. D., “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl

[2] Naboko S. N., Pushnitskii A. B., “Tochechnyi spektr, lezhaschii na nepreryvnom, dlya slabo vozmuschennykh operatorov tipa Shtarka”, Funkts. anal. i ego pril., 29:4 (1995), 31–44 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[4] Pozharskii A. A., “Ob operatorakh tipa Vane–Shtarka s singulyarnymi potentsialami”, Algebra i analiz, 14:1 (2002), 158–193 | MR | Zbl

[5] Pozharskii A. A., “O prirode spektra operatora Shtarka–Vane”, Algebra i analiz, 16:3 (2004), 171–200 | MR | Zbl

[6] Tsikon Kh. i dr., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[7] Buslaev V. S., “Kronig–Penney electron in a homogeneous electric field”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. (2), 189, Amer. Math. Soc., Providence, RI, 1999, 45–57 | MR | Zbl

[8] Christ M., Kiselev A., Absolutely continuous spectrum of Stark operators, v2 17 Oct 2001 www.arXiv.org: math.SP/0110141 | MR

[9] Deift P., Killip R., “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys., 203 (1999), 341–347 | DOI | MR | Zbl

[10] Gilbert D. J., Pearson D. B., “On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators”, J. Math. Anal. Appl., 128 (1987), 30–56 | DOI | MR | Zbl

[11] Last Y., Simon B., “Eigenfunction, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators”, Invent. Math., 135 (1999), 329–367 | DOI | MR | Zbl

[12] Perelman G., “On the absolutely continuous spectrum of Stark operators”, Comm. Math. Phys., 234 (2003), 359–381 | DOI | MR | Zbl