@article{AA_2008_20_3_a7,
author = {A. A. Pozharskii},
title = {Absolutely continuous spectrum of {Stark} type operators},
journal = {Algebra i analiz},
pages = {197--223},
year = {2008},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/}
}
A. A. Pozharskii. Absolutely continuous spectrum of Stark type operators. Algebra i analiz, Tome 20 (2008) no. 3, pp. 197-223. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a7/
[1] Buslaev V. S., Faddeev L. D., “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl
[2] Naboko S. N., Pushnitskii A. B., “Tochechnyi spektr, lezhaschii na nepreryvnom, dlya slabo vozmuschennykh operatorov tipa Shtarka”, Funkts. anal. i ego pril., 29:4 (1995), 31–44 | MR | Zbl
[3] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR
[4] Pozharskii A. A., “Ob operatorakh tipa Vane–Shtarka s singulyarnymi potentsialami”, Algebra i analiz, 14:1 (2002), 158–193 | MR | Zbl
[5] Pozharskii A. A., “O prirode spektra operatora Shtarka–Vane”, Algebra i analiz, 16:3 (2004), 171–200 | MR | Zbl
[6] Tsikon Kh. i dr., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR
[7] Buslaev V. S., “Kronig–Penney electron in a homogeneous electric field”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. (2), 189, Amer. Math. Soc., Providence, RI, 1999, 45–57 | MR | Zbl
[8] Christ M., Kiselev A., Absolutely continuous spectrum of Stark operators, v2 17 Oct 2001 www.arXiv.org: math.SP/0110141 | MR
[9] Deift P., Killip R., “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys., 203 (1999), 341–347 | DOI | MR | Zbl
[10] Gilbert D. J., Pearson D. B., “On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators”, J. Math. Anal. Appl., 128 (1987), 30–56 | DOI | MR | Zbl
[11] Last Y., Simon B., “Eigenfunction, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators”, Invent. Math., 135 (1999), 329–367 | DOI | MR | Zbl
[12] Perelman G., “On the absolutely continuous spectrum of Stark operators”, Comm. Math. Phys., 234 (2003), 359–381 | DOI | MR | Zbl