On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities
Algebra i analiz, Tome 20 (2008) no. 3, pp. 163-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted inequalities $\|f\|_{q,\nu,B_0}\le C\sum^{n}_{j=1}\|f_{xj}\|_{p,\omega_j,B_0}$ of Sobolev type $(\operatorname{supp}f\subset B_0)$ and of Poincaré type $(\bar f_{\nu,B_0}=0)$ are studied, with different weight functions for each partial derivative $f_{x_j}$, for parallelepipeds $B_0\subset E_n, n\ge 1$. Also, weighted inequalities $\|f\|_{q,\nu}\le C\| Xf\|_{p,\omega}$ of the same type are considered for vector fields $X=\{X_j\}$, $j=1,\dots,m$, with infinitely differentiable coefficients satisfying the Hörmander condition.
Keywords: Sobolev and Poincaré inequalities, Carnot-Caratheodory metric, Besicovitch property.
@article{AA_2008_20_3_a5,
     author = {F. I. Mamedov and R. A. Amanov},
     title = {On some nonuniform cases of weighted {Sobolev} and {Poincar\'e} inequalities},
     journal = {Algebra i analiz},
     pages = {163--186},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a5/}
}
TY  - JOUR
AU  - F. I. Mamedov
AU  - R. A. Amanov
TI  - On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities
JO  - Algebra i analiz
PY  - 2008
SP  - 163
EP  - 186
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a5/
LA  - ru
ID  - AA_2008_20_3_a5
ER  - 
%0 Journal Article
%A F. I. Mamedov
%A R. A. Amanov
%T On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities
%J Algebra i analiz
%D 2008
%P 163-186
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a5/
%G ru
%F AA_2008_20_3_a5
F. I. Mamedov; R. A. Amanov. On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities. Algebra i analiz, Tome 20 (2008) no. 3, pp. 163-186. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a5/

[1] Mazya V. G., Prostranstva Soboleva, LGU, L., 1985

[2] Moser J., “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math., 14 (1961), 577–591 | DOI | MR | Zbl

[3] Franchi B., Lanconelli E., “Hölder regularity theorem for a class of linear non-uniformly elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 523–541 | MR | Zbl

[4] Chiarenza F., Serapioni R., “A Harnack inequality for degenerate parabolic equations”, Comm. Partial Differential Equations, 9 (1984), 719–749 | DOI | MR | Zbl

[5] Sawyer E. T., Wheeden R. L., “Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces”, Amer. J. Math., 114 (1992), 813–874 | DOI | MR | Zbl

[6] Pansu P., “Métriques de Carnot–Carathéodory et quasiisometries des espaces symétriques de rang un”, Ann. of Math. (2), 129 (1989), 1–60 | DOI | MR | Zbl

[7] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[8] Franchi B., “Weighted Sobolev–Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations”, Trans. Amer. Math. Soc., 327 (1991), 125–158 | DOI | MR | Zbl

[9] Franchi B., Guttiérez C. E., Wheeden R. L., “Weighted Sobolev–Poincaré inequalities for Grushin type operators”, Comm. Partial Differential Equations, 19 (1994), 523–604 | DOI | MR | Zbl

[10] Hörmander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[11] Capogna L., Danielli D., Garofalo N., “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations”, Comm. Partial Differential Equations, 18 (1993), 1765–1794 | DOI | MR | Zbl

[12] Capogna L., Danielli D., Garofalo N., “The geometric Sobolev embedding for vector fields and the isoperimetric inequality”, Comm. Anal. Geom., 2 (1994), 203–215 | MR | Zbl

[13] Danielli D., “Regularity at the boundary for solutions of nonlinear subelliptic equations”, Indiana Univ. Math. J., 44 (1995), 269–286 | DOI | MR | Zbl

[14] Gusman M., Differentsirovanie integralov v $R^n$, Mir, M., 1978, 200 pp. | MR

[15] Fefferman C., Phong D. H., “Subelliptic eigenvalue problems”, Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, II (Chicago, Ill., 1981), Wadsworth, Belmont, CA, 1983, 590–606 | MR

[16] Hajlasz P., Strzelecki P., Subelliptic $P$-harmonic maps into spheres and the ghost of Hardy spaces, Max-Plank-Inst. Mat. Naturwiss. Leipzig, Preprint no. 36, 1997, 1–22

[17] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR | Zbl

[18] Garofalo N., Nhieu D., “Isoperimetric and Sobolev inequalities for Carnot–Carahtéodory spaces and the existence of minimal surfaces”, Comm. Pure Appl. Math., 49 (1996), 1081–1144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[19] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13 (1975), 161–207 | DOI | MR | Zbl

[20] Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53 (1986), 503–523 | DOI | MR | Zbl

[21] Lu G., The sharp Poincaré inequality for free vector fields: an endpoint result, Preprint, 1992 ; Rev. Math. Iberoamericana, 10 (1994), 453–466 | MR | Zbl

[22] Franchi B., Lu G., Wheeden R. L., “Representation formulas and weighted Poincaré inequalities for Hörmander vector fields”, Ann. Inst. Fourier (Grenoble), 45 (1995), 577–604 | MR | Zbl

[23] Saloff-Coste L., “A note on Poincaré, Sobolev, and Harnack inequalities”, Internat. Math. Res. Notices, 1992, no. 2, 27–38 | DOI | MR | Zbl

[24] Danielli D., “Formules de représentation et théorèmes d'inclusion pour des opérateurs sous elliptiques”, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 987–990 | MR | Zbl

[25] Pérez C., “Two weighted norm inequalities for Riesz potentials and uniform $L_p$-weighted Sobolev inequalities”, Indiana Univ. Math. J., 39 (1990), 31–44 | DOI | MR | Zbl

[26] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag New York, Inc., New York, 1969 | MR | Zbl

[27] Fleming W., Rishel R., “An integral formula for the total gradient variation”, Arch. Math., 11 (1960), 218–222 | DOI | MR | Zbl