Volumes and areas of Lipschitz metrics
Algebra i analiz, Tome 20 (2008) no. 3, pp. 74-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of estimating (Riemannian and Finsler) filling volumes by using nonexpanding maps to Banach spaces of $L^\infty$ type are developed and generalized. For every Finsler volume functional (such as the Busemann volume or the Holmes–Thompson volume), a natural extension is constructed from the class of Finsler metrics to all Lipschitz metrics, and the notion of area is defined for Lipschitz surfaces in a Banach space. A correspondence is established between minimal fillings and minimal surfaces in $L^\infty$ type spaces. A Finsler volume functional for which the Riemannian and the Finsler filling volumes are equal is introduced; it is proved that this functional is semielliptic.
Keywords: Filling volume, Finsler volume functional, (strong) geodesic minimality property.
@article{AA_2008_20_3_a3,
     author = {S. V. Ivanov},
     title = {Volumes and areas of {Lipschitz} metrics},
     journal = {Algebra i analiz},
     pages = {74--111},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a3/}
}
TY  - JOUR
AU  - S. V. Ivanov
TI  - Volumes and areas of Lipschitz metrics
JO  - Algebra i analiz
PY  - 2008
SP  - 74
EP  - 111
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a3/
LA  - ru
ID  - AA_2008_20_3_a3
ER  - 
%0 Journal Article
%A S. V. Ivanov
%T Volumes and areas of Lipschitz metrics
%J Algebra i analiz
%D 2008
%P 74-111
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a3/
%G ru
%F AA_2008_20_3_a3
S. V. Ivanov. Volumes and areas of Lipschitz metrics. Algebra i analiz, Tome 20 (2008) no. 3, pp. 74-111. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a3/

[1] Almgren F. J., jr., “Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure”, Ann. of Math. (2), 87 (1968), 321–391 | DOI | MR | Zbl

[2] Álvarez-Paiva J. C., Berck G., What is wrong with the Hausdorff measure in Finsler spaces, Preprint, 2004; arXiv: math.DG/0408413

[3] Álvarez-Paiva J. C., Thompson A. C., “Volumes on normed and Finsler spaces”, A Sampler of Riemann–Finsler Geometry, Math. Sci. Res. Inst. Publ., 50, eds. D. Bao, R. Bryant, S.-S. Chern, and Z. Shen, Cambridge Univ. Press, Cambridge, 2004, 1–48 | MR | Zbl

[4] Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[5] Besicovitch A., “On two problems of Loewner”, J. London Math. Soc., 27 (1952), 141–144 | DOI | MR | Zbl

[6] Burago D., Ivanov S., “Izometricheskie vlozheniya finslerovykh mnogoobrazii”, Algebra i analiz, 5:1 (1993), 179–192 | MR | Zbl

[7] Burago D., Ivanov S., “On asymptotic volume of tori”, Geom. Funct. Anal., 5 (1995), 800–808 | DOI | MR | Zbl

[8] Burago D., Ivanov S., “On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume”, Ann. of Math. (2), 156 (2002), 891–914 | DOI | MR | Zbl

[9] Burago D., Ivanov S., “Gaussian images of surfaces and ellipticity of surface area functionals”, Geom. Funct. Anal., 14 (2004), 469–490 | DOI | MR | Zbl

[10] Burago D., Ivanov S., “Boundary rigidity and filling volume minimality of metrics close to a flat one” (to appear)

[11] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issled., M.–Izhevsk, 2004

[12] Busemann H., “Intrinsic area”, Ann. of Math. (2), 48 (1947), 234–267 | DOI | MR

[13] Busemann H., “A theorem on convex bodies of the Brunn–Minkowski type”, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 27–31 | DOI | MR | Zbl

[14] Busemann H., Ewald G., Shephard G. C., “Convex bodies and convexity on Grassmann cones. I–IV”, Math. Ann., 151 (1963), 1–41 | DOI | MR

[15] De Cecco G., Palmieri G., “LIP manifolds: from metric to Finslerian structure”, Math. Z., 218 (1995), 223–237 | DOI | MR | Zbl

[16] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[17] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18 (1983), 1–147 | MR | Zbl

[18] Holmes R. D., Thompson A. C., “$n$-dimensional area and content in Minkowski spaces”, Pacific J. Math., 85 (1979), 77–110 | MR

[19] Ivanov S., “O dvumernykh minimalnykh zapolneniyakh”, Algebra i analiz, 13:1 (2001), 26–38 | MR

[20] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Intersci. Publ., Inc., New York, NY, 1948, 187–204 | MR

[21] Michel R., “Sur la rigidité imposée par la longuer des géodésiques”, Invent. Math., 65 (1981/82), 71–83 | DOI | MR | Zbl

[22] Pu P., “Some inequalities in certain nonorientable Riemannian manifolds”, Pacific J. Math., 2 (1952), 55–71 | MR | Zbl

[23] Thompson A. C., Minkowski geometry, Encyclopedia Math Appl., 63, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[24] Schneider R., “On the Busemann area in Minkowski spaces”, Beitr. Algebra Geom., 42 (2001), 263–273 | MR | Zbl