Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum
Algebra i analiz, Tome 20 (2008) no. 3, pp. 18-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The representations $\overrightarrow{N}_1+\overrightarrow{N}_2=D$ of a natural number $D$ as the sum of two even-Fibonacci numbers $\overrightarrow{N}_i=F_1 \circ N_i$, where $\circ$ is the circular Fibonacci multiplication, are considered. For the number $s(D)$ of solutions, the asymptotic formula $s(D)=c(D)D+r(D)$ is proved; here $c(D)$ is a continuous, piecewise linear function and the remainder $r(D)$ satisfies the inequality $$ |r(D)|\leq 5+\Bigl(\frac{1}{\ln 1/\tau}+\frac{1}{\ln 2}\Bigr)\ln D, $$ where $\tau$ is the golden section. The problem concerning the distribution of even-Fibonacci numbers $\overrightarrow{N}$ over arithmetic progressions $\overrightarrow{N}\equiv r\;\mathrm{mod}\;d$ is also studied. Let $l_{F_1}(d,r,X)$ be the number of $N's$, $0 \leq N \leq X$, satisfying the above congruence. Then the asymptotic formula $$ l_{F_1}(d,r,X)=\frac{X}{d}+c(d)\ln X $$ is true, where $c(d)=O(d\ln d)$ and the constant in $O$ does not depend on $X$$d$$r$. In particular, this formula implies the uniformity of the distribution of the even-Fibonacci numbers over progressions for all differences $d=O(\frac{X^{1/2}}{\ln X})$. The set $\overrightarrow{\mathbb{Z}}$ of even-Fibonacci numbers is an integral modification of the well-known one-dimensional Fibonacci quasilattice $\mathcal{F}$. Like $\mathcal{F}$, the set $\overrightarrow{\mathbb{Z}}$ is a quasilattice, but it is not a model set. However, it is shown that the spectra $\Lambda_{\mathcal{F}}$ and $\Lambda_{\overrightarrow{\mathbb{Z}}}$ coincide up to a scale factor $\nu=1+\tau^2$, and an explicit formula is obtained for the structural amplitudes $f_{\overrightarrow{\mathbb{Z}}}(\lambda)$, where $\lambda=a+b \tau$ lies in the spectrum: $$ f_{\overrightarrow{\mathbb{Z}}}(\lambda)=\frac{\sin(\pi b\tau)}{\pi b\tau}\exp(-3\pi i\;b\tau). $$
Keywords: Even-Fibonacci numbers, Fibonacci quasilattices, Fibonacci circular multiplication, Diophantine equations, spectrum.
@article{AA_2008_20_3_a1,
     author = {V. G. Zhuravlev},
     title = {Even {Fibonacci} numbers: the binary additive problem, the distribution over progressions, and the spectrum},
     journal = {Algebra i analiz},
     pages = {18--46},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum
JO  - Algebra i analiz
PY  - 2008
SP  - 18
EP  - 46
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/
LA  - ru
ID  - AA_2008_20_3_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum
%J Algebra i analiz
%D 2008
%P 18-46
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/
%G ru
%F AA_2008_20_3_a1
V. G. Zhuravlev. Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum. Algebra i analiz, Tome 20 (2008) no. 3, pp. 18-46. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/

[1] Vainshtein B. K., Sovremennaya kristallografiya, t. 2, Nauka, M., 1980

[2] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[3] Zhuravlev V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauch. semin. POMI, 337, 2006, 165–190 | MR | Zbl

[4] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | MR | Zbl

[5] Zhuravlev V. G., “Odnomernye kvazireshëtki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 151–182 | MR

[6] Zhuravlev V. G., Maleev A. V., “Difraktsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya (to appear)

[7] Keipers L., Niderreitor G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR

[8] Matiyasevich Yu. V., “Svyaz sistem uravnenii v slovakh i dlinakh s 10-i problemoi Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 132–144 | Zbl

[9] Matiyasevich Yu. V., “Dve reduktsii 10-i problemy Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 145–158 | Zbl

[10] Adamczewski B., “Répartitions des suites $(n\alpha)_{n\in\mathbb{N}}$ et substitutions”, Acta Arith., 112 (2004), 1–22 | DOI | MR | Zbl

[11] Brown T. C., Shiue P. J.-S., “Sums of fractional parts of integer multiples of an irrational”, J. Number Theory, 50 (1995), 181–192 | DOI | MR | Zbl

[12] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[13] Hof A., “On diffraction by aperiodic structures”, Comm. Math. Phys., 169 (1995), 25–43 | DOI | MR | Zbl

[14] Janot C., Quasicrystals, Clarendon Press, Oxford, 1994 | Zbl

[15] Knuth D. E., “Fibonacci multiplication”, Appl. Math. Lett., 1 (1988), 57–60 | DOI | MR | Zbl

[16] Lagarias J., “Mathematical quasicrystals and the problem of diffraction”, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, Amer Math. Soc., Providence, RI, 2000, 61–93 | MR | Zbl

[17] Meyer Y., Algebraic numbers and harmonic analysis, North-Holland Math. Library, 2, North-Holland Publ., Co., Amsterdam–London, 1972 | MR | Zbl

[18] Moody R. V., “Meyer sets and their duals”, The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, ed. R. V. Moody, Kluwer Acad. Publ., Dordrecht, 1997, 403–441 | MR | Zbl

[19] Moody R. V., “Model sets: a survey”, From Quasicrystals to More Complex Systems, eds. F. Alex, F. Dénoyer, and J. P. Gazeau, EPD Science, Les Ulis; Springer-Verlag, Berlin, 2000, 145–166

[20] Schlottmann M., “Cut-and-project sets in locally compact abelian groups”, Quasicrystals and Discrete Geometry (Toronto, ON, 1995), Fields Inst. Monogr., 10, ed. J. Patera, Amer. Math. Soc., Providence, RI, 1998, 247–264 | MR | Zbl

[21] Schlottmann M., “Generalized model sets and dynamical systems”, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, eds. M. Baake and R. V. Moody, Amer. Math. Soc., Providence, RI, 2000, 143–159 | MR | Zbl

[22] Shutov A. V., “New estimates in the Hecke–Kesten problem”, Anal. Probab. Methods Number Theory, eds. E. Manstavičius et al., Vilnius, 2007, 190–203 | MR | Zbl