Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2008_20_3_a1, author = {V. G. Zhuravlev}, title = {Even {Fibonacci} numbers: the binary additive problem, the distribution over progressions, and the spectrum}, journal = {Algebra i analiz}, pages = {18--46}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/} }
TY - JOUR AU - V. G. Zhuravlev TI - Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum JO - Algebra i analiz PY - 2008 SP - 18 EP - 46 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/ LA - ru ID - AA_2008_20_3_a1 ER -
V. G. Zhuravlev. Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum. Algebra i analiz, Tome 20 (2008) no. 3, pp. 18-46. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a1/
[1] Vainshtein B. K., Sovremennaya kristallografiya, t. 2, Nauka, M., 1980
[2] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[3] Zhuravlev V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauch. semin. POMI, 337, 2006, 165–190 | MR | Zbl
[4] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | MR | Zbl
[5] Zhuravlev V. G., “Odnomernye kvazireshëtki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 151–182 | MR
[6] Zhuravlev V. G., Maleev A. V., “Difraktsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya (to appear)
[7] Keipers L., Niderreitor G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR
[8] Matiyasevich Yu. V., “Svyaz sistem uravnenii v slovakh i dlinakh s 10-i problemoi Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 132–144 | Zbl
[9] Matiyasevich Yu. V., “Dve reduktsii 10-i problemy Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 145–158 | Zbl
[10] Adamczewski B., “Répartitions des suites $(n\alpha)_{n\in\mathbb{N}}$ et substitutions”, Acta Arith., 112 (2004), 1–22 | DOI | MR | Zbl
[11] Brown T. C., Shiue P. J.-S., “Sums of fractional parts of integer multiples of an irrational”, J. Number Theory, 50 (1995), 181–192 | DOI | MR | Zbl
[12] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl
[13] Hof A., “On diffraction by aperiodic structures”, Comm. Math. Phys., 169 (1995), 25–43 | DOI | MR | Zbl
[14] Janot C., Quasicrystals, Clarendon Press, Oxford, 1994 | Zbl
[15] Knuth D. E., “Fibonacci multiplication”, Appl. Math. Lett., 1 (1988), 57–60 | DOI | MR | Zbl
[16] Lagarias J., “Mathematical quasicrystals and the problem of diffraction”, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, Amer Math. Soc., Providence, RI, 2000, 61–93 | MR | Zbl
[17] Meyer Y., Algebraic numbers and harmonic analysis, North-Holland Math. Library, 2, North-Holland Publ., Co., Amsterdam–London, 1972 | MR | Zbl
[18] Moody R. V., “Meyer sets and their duals”, The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, ed. R. V. Moody, Kluwer Acad. Publ., Dordrecht, 1997, 403–441 | MR | Zbl
[19] Moody R. V., “Model sets: a survey”, From Quasicrystals to More Complex Systems, eds. F. Alex, F. Dénoyer, and J. P. Gazeau, EPD Science, Les Ulis; Springer-Verlag, Berlin, 2000, 145–166
[20] Schlottmann M., “Cut-and-project sets in locally compact abelian groups”, Quasicrystals and Discrete Geometry (Toronto, ON, 1995), Fields Inst. Monogr., 10, ed. J. Patera, Amer. Math. Soc., Providence, RI, 1998, 247–264 | MR | Zbl
[21] Schlottmann M., “Generalized model sets and dynamical systems”, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, eds. M. Baake and R. V. Moody, Amer. Math. Soc., Providence, RI, 2000, 143–159 | MR | Zbl
[22] Shutov A. V., “New estimates in the Hecke–Kesten problem”, Anal. Probab. Methods Number Theory, eds. E. Manstavičius et al., Vilnius, 2007, 190–203 | MR | Zbl