Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions
Algebra i analiz, Tome 20 (2008) no. 2, pp. 149-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator whose spectrum is studied corresponds to linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions. The equations are obtained by linearization of the nonlinear model equations of viscous compressible fluid near an arbitrary solution depending on the variable $x$. It is proved that the operator in question is sectorial and that its spectrum is discrete. Also, a subset of the complex plane that contains the spectrum is described. The resolvent is estimated off a sector in the complex plane that is symmetric with respect to the real axis.
Keywords: Viscous compressible fluid, linearization, periodic boundary condition.
@article{AA_2008_20_2_a5,
     author = {M. A. Pribyl'},
     title = {Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions},
     journal = {Algebra i analiz},
     pages = {149--177},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/}
}
TY  - JOUR
AU  - M. A. Pribyl'
TI  - Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions
JO  - Algebra i analiz
PY  - 2008
SP  - 149
EP  - 177
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/
LA  - ru
ID  - AA_2008_20_2_a5
ER  - 
%0 Journal Article
%A M. A. Pribyl'
%T Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions
%J Algebra i analiz
%D 2008
%P 149-177
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/
%G ru
%F AA_2008_20_2_a5
M. A. Pribyl'. Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions. Algebra i analiz, Tome 20 (2008) no. 2, pp. 149-177. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/

[1] Kagei Y., Kobayashi T., “Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space”, Arch. Rational Mech. Anal., 177:2 (2005), 231–330 | DOI | MR | Zbl

[2] Matsumura A., Nishida T., “The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids”, Proc. Japan Acad. Ser. A Math. Sci., 55:9 (1979), 337–312 | DOI | MR

[3] Matsumura A., Nishida T., “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl

[4] Núnez M., “Spectral analysis of viscous static compressible fluid equilibria”, J. Phys. A, 34:20 (2001), 4341–4352 | DOI | MR | Zbl

[5] Pribyl M. A., “Spektralnyi analiz linearizovannykh statsionarnykh uravnenii vyazkoi szhimaemoi zhidkosti”, Mat. sb., 198:10 (2007), 119–140 | MR | Zbl

[6] Fursikov A. V., “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Mat. sb., 192:4 (2001), 115–160 | MR | Zbl

[7] Fursikov A. V., “Stabilizatsiya s granitsy reshenii sistemy Nave–Stoksa: razreshimost i obosnovanie vozmozhnosti chislennogo modelirovaniya”, Dalnevost. mat. zh., 4:1 (2003), 86–100 | MR

[8] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[9] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR