Keywords: linearization, periodic boundary condition.
@article{AA_2008_20_2_a5,
author = {M. A. Pribyl'},
title = {Spectral analysis of linearized stationary equations of viscous compressible fluid in~$\mathbb{R}^3$, with periodic boundary conditions},
journal = {Algebra i analiz},
pages = {149--177},
year = {2008},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/}
}
TY - JOUR
AU - M. A. Pribyl'
TI - Spectral analysis of linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions
JO - Algebra i analiz
PY - 2008
SP - 149
EP - 177
VL - 20
IS - 2
UR - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/
LA - ru
ID - AA_2008_20_2_a5
ER -
%0 Journal Article
%A M. A. Pribyl'
%T Spectral analysis of linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions
%J Algebra i analiz
%D 2008
%P 149-177
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/
%G ru
%F AA_2008_20_2_a5
M. A. Pribyl'. Spectral analysis of linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions. Algebra i analiz, Tome 20 (2008) no. 2, pp. 149-177. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a5/
[1] Kagei Y., Kobayashi T., “Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space”, Arch. Rational Mech. Anal., 177:2 (2005), 231–330 | DOI | MR | Zbl
[2] Matsumura A., Nishida T., “The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids”, Proc. Japan Acad. Ser. A Math. Sci., 55:9 (1979), 337–312 | DOI | MR
[3] Matsumura A., Nishida T., “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl
[4] Núnez M., “Spectral analysis of viscous static compressible fluid equilibria”, J. Phys. A, 34:20 (2001), 4341–4352 | DOI | MR | Zbl
[5] Pribyl M. A., “Spektralnyi analiz linearizovannykh statsionarnykh uravnenii vyazkoi szhimaemoi zhidkosti”, Mat. sb., 198:10 (2007), 119–140 | MR | Zbl
[6] Fursikov A. V., “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Mat. sb., 192:4 (2001), 115–160 | MR | Zbl
[7] Fursikov A. V., “Stabilizatsiya s granitsy reshenii sistemy Nave–Stoksa: razreshimost i obosnovanie vozmozhnosti chislennogo modelirovaniya”, Dalnevost. mat. zh., 4:1 (2003), 86–100 | MR
[8] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[9] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR
[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR