An upper bound for the curvature integral
Algebra i analiz, Tome 20 (2008) no. 2, pp. 134-148
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the integral of the scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for the sectional curvature.
Keywords:
Sectional curvature, scalar curvature, Alexandrov space.
@article{AA_2008_20_2_a4,
author = {Petrunin},
title = {An upper bound for the curvature integral},
journal = {Algebra i analiz},
pages = {134--148},
year = {2008},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/}
}
Petrunin. An upper bound for the curvature integral. Algebra i analiz, Tome 20 (2008) no. 2, pp. 134-148. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/
[БГП] Burago Yu. D., Gromov M. L., Perelman G. Ya., “Prostranstva A. D. Aleksandrova s ogranichennymi snizu kriviznami”, Uspekhi mat. nauk, 47:2 (1992), 3–51 | MR | Zbl
[Буяло] Buyalo S. V., “Nekotorye analiticheskie svoistva vypuklykh mnozhestv v rimanovykh prostranstvakh”, Mat. sb., 107(149):1 (1978), 37–55 | MR | Zbl
[P-2003] Petrunin A., “Polyhedral approximations of Riemannian manifolds”, Turkish J. Math., 27:1 (2003), 173–187 | MR | Zbl
[P-2007] Petrunin A., “Semiconcave functions in Alexandrov's geometry”, Surveys in Differential Geometry, 11 (2007), 135–202 | MR