An upper bound for the curvature integral
Algebra i analiz, Tome 20 (2008) no. 2, pp. 134-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the integral of the scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for the sectional curvature.
Keywords: Sectional curvature, scalar curvature, Alexandrov space.
@article{AA_2008_20_2_a4,
     author = {Petrunin},
     title = {An upper bound for the curvature integral},
     journal = {Algebra i analiz},
     pages = {134--148},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/}
}
TY  - JOUR
AU  - Petrunin
TI  - An upper bound for the curvature integral
JO  - Algebra i analiz
PY  - 2008
SP  - 134
EP  - 148
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/
LA  - ru
ID  - AA_2008_20_2_a4
ER  - 
%0 Journal Article
%A Petrunin
%T An upper bound for the curvature integral
%J Algebra i analiz
%D 2008
%P 134-148
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/
%G ru
%F AA_2008_20_2_a4
Petrunin. An upper bound for the curvature integral. Algebra i analiz, Tome 20 (2008) no. 2, pp. 134-148. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a4/

[БГП] Burago Yu. D., Gromov M. L., Perelman G. Ya., “Prostranstva A. D. Aleksandrova s ogranichennymi snizu kriviznami”, Uspekhi mat. nauk, 47:2 (1992), 3–51 | MR | Zbl

[Буяло] Buyalo S. V., “Nekotorye analiticheskie svoistva vypuklykh mnozhestv v rimanovykh prostranstvakh”, Mat. sb., 107(149):1 (1978), 37–55 | MR | Zbl

[P-2003] Petrunin A., “Polyhedral approximations of Riemannian manifolds”, Turkish J. Math., 27:1 (2003), 173–187 | MR | Zbl

[P-2007] Petrunin A., “Semiconcave functions in Alexandrov's geometry”, Surveys in Differential Geometry, 11 (2007), 135–202 | MR