Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~II
Algebra i analiz, Tome 20 (2008) no. 1, pp. 190-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a domain in the complex plane $\mathbb C$, $H(\Omega)$ the space of functions holomorphic in $\Omega$, and $\mathscr P$ a family of functions subharmonic in $\Omega$. Denote by $H_{\mathscr P}(\Omega)$ the class of functions $f\in H(\Omega)$ satisfying $|f(z)|\leq C_f\exp p_f(z)$ for all $z\in\Omega$, where $p_f\in\mathscr P$ and $C_f$ is a constant. Conditions are found ensuring that a sequence $\Lambda=\{\lambda_k\}\subset\Omega$ be a subsequence of zeros for various classes $H_{\mathscr P}(\Omega)$. As a rule, the results and the method are new already when $\Omega=\mathbb D$ is the unit circle and $\mathscr P$ is a system of radial majorants $p(z)=p(|z|)$. We continue the enumeration of Part I.
Keywords: Holomorphic function, algebra of functions, weighted space, nonuniqueness sequence.
@article{AA_2008_20_1_a6,
     author = {B. N. Khabibullin and F. B. Khabibullin and L. Yu. Cherednikova},
     title = {Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise {connectedness.~II}},
     journal = {Algebra i analiz},
     pages = {190--236},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_1_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - F. B. Khabibullin
AU  - L. Yu. Cherednikova
TI  - Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~II
JO  - Algebra i analiz
PY  - 2008
SP  - 190
EP  - 236
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_1_a6/
LA  - ru
ID  - AA_2008_20_1_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A F. B. Khabibullin
%A L. Yu. Cherednikova
%T Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~II
%J Algebra i analiz
%D 2008
%P 190-236
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_1_a6/
%G ru
%F AA_2008_20_1_a6
B. N. Khabibullin; F. B. Khabibullin; L. Yu. Cherednikova. Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~II. Algebra i analiz, Tome 20 (2008) no. 1, pp. 190-236. http://geodesic.mathdoc.fr/item/AA_2008_20_1_a6/

[1] Khabibullin B. N., Khabibullin F. B., Cherednikova L. Yu., “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I”, Algebra i analiz, 20:1 (2008), 146–189 | MR

[2] Azarin V. S., “Ob asimptoticheskom povedenii subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 108(150):2 (1979), 147–167 | MR | Zbl

[3] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[4] Ransford T. J., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[5] Korenblum B., “An extension of the Nevanlinna theory”, Acta Math., 135:3–4 (1975), 187–219 | DOI | MR | Zbl

[6] Seip K., “On a theorem of Korenblum”, Ark. Mat., 32 (1994), 237–243 | DOI | MR | Zbl

[7] Seip K., “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67 (1995), 307–322 | DOI | MR | Zbl

[8] Bruna J., Massaneda X., “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66 (1995), 217–252 | DOI | MR | Zbl

[9] Luecking D., “Zero sequences for Bergman spaces”, Complex Variables Theory Appl., 30 (1996), 345–362 | MR | Zbl

[10] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[11] Khabibullin B. N., Zero (sub)sets for spaces of holomorphic functions and (sub)harmonic minorants, Electronic Archive at LANL, 18 Dec 2004, 42 p. http://arxiv.org/abs/math.CV/0412359

[12] Shamoyan F. A., “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakteristika nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Mat., 13:5–6 (1978), 405–422 | MR | Zbl

[13] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[14] Beller E., “Factorization for non-Nevanlinna classes of analytic functions”, Israel J. Math., 27:3–4 (1977), 320–330 | DOI | MR | Zbl

[15] Cherednikova L. Yu., “Posledovatelnosti needinstvennosti dlya vesovykh algebr golomorfnykh funktsii v edinichnom kruge”, Mat. zametki, 77:5 (2005), 775–787 | MR | Zbl

[16] Shamoyan F. A., “O nulyakh analiticheskikh v kruge funktsii, rastuschikh vblizi granitsy”, Izv. AN ArmSSR. Mat., 18:1 (1983), 15–27 | MR | Zbl

[17] Khabibullin B. N., “Rost tselykh funktsii s zadannymi nulyami i predstavlenie meromorfnykh funktsii”, Mat. zametki, 73:1 (2003), 120–134 | MR | Zbl

[18] Khabibullin B. N., “Nulevye podmnozhestva, predstavlenie meromorfnykh funktsii i kharakteristiki Nevanlinny v kruge”, Mat. sb., 197:2 (2006), 117–136 | MR | Zbl