Weight elements of Chevalley groups
Algebra i analiz, Tome 20 (2008) no. 1, pp. 34-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a detailed study of some remarkable semisimple elements of (extended) Chevalley groups that are diagonalizable over the ground field — the weight elements. These are the conjugates of certain semisimple elements $h_{\omega}(\varepsilon)$ of extended Chevalley groups $\overline{G}=\overline{G}(\Phi,K)$, where $\omega$ is a weight of the dual root system $\Phi^{\vee}$ and $\varepsilon\in K^*$. In the adjoint case the $h_{\omega}(\varepsilon)$'s were defined by Chevalley himself and in the simply connected case they were constructed by Berman and Moody. The conjugates of $h_{\omega}(\varepsilon)$ are called weight elements of type $\omega$. Various constructions of weight elements are discussed in the paper, in particular, their action in irreducible rational representations and weight elements induced on a regularly embedded Chevalley subgroup by the conjugation action of a larger Chevalley group. It is proved that for a given $x\in\overline{G}$ all elements $x(\varepsilon)=xh_{\omega}(\varepsilon)x^{-1}$, $\varepsilon\in K^*$, apart maybe from a finite number of them, lie in the same Bruhat coset $\overline{B}w\overline{B}$, where $w$ is an involution of the Weyl group $W=W(\Phi)$. The elements $h_{\omega}(\varepsilon)$ are particularly important when $\omega=\varpi_{i}$ is a microweight of $\Phi^{\vee}$. The main result of the paper is a calculation of the factors of the Bruhat decomposition of microweight elements $x(\varepsilon)$ for the case where $\omega=\varpi_{i}$. It turns out that all nontrivial $x(\varepsilon)$'s lie in the same Bruhat coset $\overline{B}w\overline B$, where $w$ is a product of reflections in pairwise strictly orthogonal roots $\gamma_1,\ldots,\gamma_{r+s}$. Moreover, if among these roots $r$ are long and $s$ are short, then $r+2s$ does not exceed the width of the unipotent radical of the $i$th maximal parabolic subgroup in $\overline G$. A version of this result was first announced in a paper by the author in Soviet Math. Doklady in 1988. From a technical viewpoint, this amounts to the determination of Borel orbits of a Levi factor of a parabolic subgroup with Abelian unipotent radical and generalizes some results of Richardson, Röhrle, and Steinberg. These results are instrumental in description of overgroups of a split maximal torus and in the recent papers by the author and V. Nesterov on the geometry of tori.
Keywords: Chevalley groups, semisimple elements, Bruhat decomposition, microweights, Borel orbits, parabolic subgroups with Abelian unipotent radical.
@article{AA_2008_20_1_a1,
     author = {N. Vavilov},
     title = {Weight elements of {Chevalley} groups},
     journal = {Algebra i analiz},
     pages = {34--85},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_1_a1/}
}
TY  - JOUR
AU  - N. Vavilov
TI  - Weight elements of Chevalley groups
JO  - Algebra i analiz
PY  - 2008
SP  - 34
EP  - 85
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_1_a1/
LA  - ru
ID  - AA_2008_20_1_a1
ER  - 
%0 Journal Article
%A N. Vavilov
%T Weight elements of Chevalley groups
%J Algebra i analiz
%D 2008
%P 34-85
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_1_a1/
%G ru
%F AA_2008_20_1_a1
N. Vavilov. Weight elements of Chevalley groups. Algebra i analiz, Tome 20 (2008) no. 1, pp. 34-85. http://geodesic.mathdoc.fr/item/AA_2008_20_1_a1/

[1] Borevich Z. I., “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauch. semin. LOMI, 64, 1976, 12–29 | Zbl

[2] Borevich Z. I., Vavilov N. A., “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-ta AN SSSR, 148, 1978, 43–57 | MR | Zbl

[3] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[4] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[5] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR

[6] Vavilov N. A., “O podgruppakh polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschikh gruppu diagonalnykh matrits”, Vestn. LGU. Mat., mekh., astronom., 1981:1, 10–15 | MR | Zbl

[7] Vavilov N. A., “Razlozhenie Bryua dlya podgrupp, soderzhaschikh gruppu diagonalnykh matrits. I, II”, Zap. nauch. semin. LOMI, 103, 1980, 20–30 ; 114, 1982, 50–61 | MR | Zbl | MR | Zbl

[8] Vavilov N. A., “O podgruppakh spetsialnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits. I–V”, Vestn. LGU. Mat., mekh., astronom., 1985, no. 4, 3–7 ; 1986, No 1, 10–15 ; 1987, No 2, 3–8 ; 1988, No 3, 10–15 ; 1993, No 2, 10–15 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[9] Vavilov N. A., “Razlozhenie Bryua odnomernykh preobrazovanii”, Vestn. LGU. Ser. I, 1986, no. 3, 14–20 | MR | Zbl

[10] Vavilov N. A., “Vesovye elementy grupp Shevalle”, Dokl. AN SSSR, 298:3 (1988), 524–527 | MR | Zbl

[11] Vavilov N. A., “Teoremy sopryazhennosti dlya podgrupp rasshirennykh grupp Shevalle, soderzhaschikh rasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 299:2 (1988), 269–272 | MR | Zbl

[12] Vavilov N. A., “Razlozhenie Bryua dlinnykh kornevykh poluprostykh elementov v gruppakh Shevalle”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, vyp. 2, LGU, L., 1988, 18–39 | MR

[13] Vavilov N. A., “Razlozhenie Bryua dvumernykh preobrazovanii”, Vestn. LGU. Ser. I, 1989, no. 3, 3–7 | MR

[14] Vavilov N. A., “Kornevye poluprostye elementy i troiki kornevykh unipotentnykh podgrupp v gruppakh Shevalle”, Voprosy algebry, vyp. 4, Universitetskoe, Minsk, 1989, 162–173 | MR

[15] Vavilov N. A., “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta AN SSSR, 183, 1990, 29–42 | MR

[16] Vavilov N. A., “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. mat. ob-va, 1, 1990, 64–109 | MR

[17] Vavilov N. A., “Unipotentnye elementy v podgruppakh rasshirennykh grupp Shevalle, soderzhaschikh rasschepimyi maksimalnyi tor”, Dokl. RAN, 328:5 (1993), 536–539 | MR | Zbl

[18] Vavilov N. A., “Podgruppy gruppy $\mathrm{SL}_n$ nad polulokalnym koltsom”, Zap. nauch. semin. POMI, 343, 2007, 33–53 | MR

[19] Vavilov N. A., “Geometriya $1$-torov v $\mathrm{GL}_n$”, Algebra i analiz, 19:3 (2007), 119–150 | MR

[20] Vavilov N. A., Dybkova E. V., “Podgruppy polnoi simplekticheskoi gruppy, soderzhaschie gruppu diagonalnykh matrits. I, II”, Zap. nauch. semin. LOMI, 103, 1980, 31–47 ; 132, 1983, 44–56 | MR | Zbl | MR

[21] Vavilov N. A., Mitrofanov M. Yu., “Peresechenie dvukh kletok Bryua”, Dokl. RAN, 377:1 (2001), 7–10 | MR | Zbl

[22] Vavilov N. A., Semenov A. A., “Razlozhenie Bryua dlinnykh kornevykh torov v gruppakh Shevalle”, Zap. nauch. semin. LOMI, 175, 1989, 12–23 | MR | Zbl

[23] Vavilov N. A., Semenov A. A., “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Dokl. RAN, 338:6 (1994), 725–727 | Zbl

[24] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981, 336 pp. | MR | Zbl

[25] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Mat. sb., 30:2 (1952), 349–462 | MR | Zbl

[26] Zalesskii A. E., “Lineinye gruppy”, Itogi nauki i tekhn. Algebra. Topologiya. Geometriya, 21, VINITI, M., 1983, 135–182 | MR

[27] Kashin V. V., “Orbity prisoedinennogo i koprisoedinennogo deistvii borelevskoi podgruppy poluprostykh algebraicheskikh grupp”, Problemy teorii grupp i gomologicheskoi algebry, Yaroslav. gos. un-t, Yaroslavl, 1990, 141–158 | MR

[28] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, UMN, 41:1 (1986), 57–96 | MR

[29] Mitrofanov M. Yu., “Rol matroidov v opisanii melkikh kletok Bryua”, Zap. nauch. semin. POMI, 319, 2004, 244–260 | MR | Zbl

[30] Popov V. L., “Zamknutye orbity borelevskikh podgrupp”, Mat. sb., 135:3 (1988), 385–402

[31] Semenov A. A., “Razlozhenie Bryua kornevykh poluprostykh podgrupp v spetsialnoi lineinoi gruppe”, Zap. nauch. semin. LOMI, 160, 1987, 239–246 | Zbl

[32] Semenov A. A., Razlozhenie Bryua dlinnykh kornevykh poluprostykh torov v gruppakh Shevalle, Diss. na soisk. uchen. st. kand. fiz.-mat. nauk, SPbGU, SPb., 1991

[33] Springer T. A., Steinberg R., “Klassy sopryazhennykh elementov”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 162–262 | MR

[34] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[35] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[36] Shevalle K., “O nekotorykh prostykh gruppakh”, Matematika. Period sb. perev. in. statei, 2:1 (1958), 3–53 | MR

[37] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21:3 (1969), 474–494 | DOI | MR | Zbl

[38] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[39] Azad H., Barry M., Seitz G. M., “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[40] Berman S., Moody R., “Extensions of Chevalley groups”, Israel J. Math., 22:1 (1975), 42–51 | DOI | MR | Zbl

[41] Brion M., “Représentations exceptionnelles des groupes semi-simples”, Ann. Sci. École Norm. Sup. (4), 18 (1985), 345–387 | MR | Zbl

[42] Bürgstein H., Hesselink W. H., “Algorithmic orbit classification for some Borel group actions”, Compositio Math., 61:1 (1987), 3–41 | MR | Zbl

[43] Carter R. W., Simple groups of Lie type, John Wiley and Sons, Inc., New York, 1989 | MR | Zbl

[44] Carter R. W., “Conjugacy classes in the Weyl group”, Compositio Math., 25:1 (1972), 1–59 | MR | Zbl

[45] Carter R. W., Finite groups of Lie type: Conjugacy classes and complex characters, Wiley and Sons, Inc., New York, 1985 | MR

[46] Cohen A. M., Cooperstein B. N., “The 2-spaces of the standard $\mathrm{E}_6(q)$-module”, Geom. Dedicata, 25:1–3 (1988), 467–480 | MR | Zbl

[47] Deriziotis D. I., Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen Fachbereich Math. Univ. Essen, 11, Univ. Essen, Essen, 1984 | MR | Zbl

[48] Ellers E., Gordeev N., “Intersection of conjugacy classes with Bruhat cells in Chevalley groups”, Pacific J. Math., 214 (2004), 245–261 | MR | Zbl

[49] Gilkey P., Seitz G. M., “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl

[50] Harebov A. L., Vavilov N. A., “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[51] Haris S., “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93:1 (1971), 75–106 | DOI | MR | Zbl

[52] Hesselink W., “A classification of the nilpotent triangular matrices”, Compositio Math., 55:1 (1985), 89–133 | MR | Zbl

[53] Mars J. G. M., “Les nombres de Tamagawa de certains groupes exceptionnels”, Bull. Soc. Math. France, 94 (1966), 97–140 | MR | Zbl

[54] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[55] Mitrofanov M., Vavilov N., “Overgroups of the diagonal subgroup via small Bruhat cells”, Algebra Colloq. (to appear)

[56] Parker Ch., Röhrle G. E., Minuscule representations, Preprint SFB 343, no. 72, Univ. Bielefeld, 1993

[57] Parker Ch., Röhrle G. E., “The restriction of minuscule representations to parabolic subgroups”, Math. Proc. Cambridge Philos. Soc., 135 (2003), 59–79 | DOI | MR | Zbl

[58] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8 (1998), 61–97 | DOI | MR

[59] Popov V. L., “A finiteness theorem for parabolic subgroups of fixed modality”, Indag. Math. (N.S.), 8:1 (1997), 125–132 | DOI | MR | Zbl

[60] Popov V. L, Röhrle G., “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 297–320 | MR | Zbl

[61] Richardson R., “Finiteness theorems for orbits of algebraic groups”, Indag. Math., 47 (1985), 337–344 | MR | Zbl

[62] Richardson R., Röhrle G. E., Steinberg R., “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671 | DOI | MR | Zbl

[63] Röhrle G. E., “Orbits in internal Chevalley modules”, Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992, 311–315 | MR | Zbl

[64] Röhrle G. E., “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[65] Röhrle G. E., “On extraspecial parabolic subgroups”, Linear Algebraic Groups and their Representations (Los Angeles, CA, 1992), Contemp. Math., 153, Amer. Math. Soc., Providence, RI, 1993, 143–155 | MR | Zbl

[66] Röhrle G. E., “Parabolic subgroups of positive modality”, Geom. Dedicata, 60 (1996), 163–186 | MR | Zbl

[67] Röhrle G. E., “A note on the modality of parabolic subgroups”, Indag. Math., 8:4 (1997), 549–559 | DOI | MR | Zbl

[68] Röhrle G. E., “On the modality of parabolic subgroups of linear algebraic groups”, Manuscripta Math., 98 (1999), 9–20 | DOI | MR | Zbl

[69] Seitz G. M., “Subgroups of finite groups of Lie type”, J. Algebra, 61:1 (1979), 16–27 | DOI | MR | Zbl

[70] Seligman G. B., Modular Lie algebras, Ergeb. Math. Grenzgeb., 40, Springer-Verlag New York, Inc., New York, 1967 | MR | Zbl

[71] Semenov A. A., Vavilov N. A., Halbeinfache Wurzelelemente in Chevalley-Gruppen, Preprint no. 2, Univ. Bielefeld, 1994, 11 pp.

[72] Springer T. A., Linear algebraic groups, Progr. Math., 9, Birkhäuser, Boston, MA, 1981 | MR | Zbl

[73] Stein M. R., “Stability theorems for $\mathrm{K}_1$, $\mathrm{K}_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[74] Tits J., “Groupes semi-simples isotropes”, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Gauthier-Villars, Paris, 1962, 137–147 | MR

[75] Tits J., “Normalisateurs de tores. I. Groupes de Coxeter étendus”, J. Algebra, 4:1 (1966), 96–116 | DOI | MR | Zbl

[76] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[77] Vavilov N. A., Weight elements of Chevalley groups, Preprint no. 35, Univ. Warwick, 1994, 46 pp.

[78] Vavilov N. A., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl

[79] Vavilov N. A., “Unipotent elements in subgroups which contain a split maximal torus”, J. Algebra, 176 (1995), 356–367 | DOI | MR | Zbl

[80] Vavilov N. A., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[81] Vavilov N. A., “Do it yourself structure constants for Lie algebras of types $E_l$”, Zap. nauch. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[82] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–113 | DOI | MR | Zbl