Dessins d'enfants and differential equations
Algebra i analiz, Tome 19 (2007) no. 6, pp. 184-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete version of the classical Riemann–Hilbert problem is stated and solved. In particular, a Riemann–Hilbert problem is associated with every dessin d'enfants. It is shown how to compute the solution for a dessin that is a tree. This amounts to finding a Fuchsian differential equation satisfied by the local inverses of a Shabat polynomial. A universal annihilating operator for the inverses of a generic polynomial is produced. A classification is given for the plane trees that have a representation by Möbius transformations and for those that have a linear representation of dimension at most two. This yields an analogue for trees of Schwarz's classical list, that is, a list of the plane trees whose Riemann–Hilbert problem has a hypergeometric solution of order at most two.
Keywords: Riemann–Hilbert problem, Fuchsian equation, dessins d'enfants.
@article{AA_2007_19_6_a8,
     author = {F. L\'arusson and T. Sadykov},
     title = {Dessins d'enfants and differential equations},
     journal = {Algebra i analiz},
     pages = {184--199},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_6_a8/}
}
TY  - JOUR
AU  - F. Lárusson
AU  - T. Sadykov
TI  - Dessins d'enfants and differential equations
JO  - Algebra i analiz
PY  - 2007
SP  - 184
EP  - 199
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_6_a8/
LA  - en
ID  - AA_2007_19_6_a8
ER  - 
%0 Journal Article
%A F. Lárusson
%A T. Sadykov
%T Dessins d'enfants and differential equations
%J Algebra i analiz
%D 2007
%P 184-199
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_6_a8/
%G en
%F AA_2007_19_6_a8
F. Lárusson; T. Sadykov. Dessins d'enfants and differential equations. Algebra i analiz, Tome 19 (2007) no. 6, pp. 184-199. http://geodesic.mathdoc.fr/item/AA_2007_19_6_a8/

[1] Anosov D. V., Bolibruch A. A., The Riemann–Hilbert problem, Aspects Math., E22, Friedr. Vieweg and Sohn, Braunschweig, 1994 | MR

[2] Beauville A., “Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann”, after A. Bolibruch, Séminaire Bourbaki, V. 1992/93, No 765, 4, Astérisque, 216, 1993, 103–119 | MR | Zbl

[3] Math. USSR-Izv., 14:2 (1980) | DOI | MR | MR | Zbl | Zbl

[4] Sb. Math., 193:3–4, 329–332 (2002) | MR | Zbl

[5] Bétréma J., Zvonkin A., “Plane trees and Shabat polynomials”, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Discrete Math., 153, no. 1–3, 47–58, 1996 | MR | Zbl

[6] Gantz C., Steer B., “Gauge fixing for logarithmic connections over curves and the Riemann–Hilbert problem”, J. London Math. Soc. (2), 59 (1999), 479–490 | DOI | MR | Zbl

[7] 243–283 | MR | Zbl

[8] Lando S. K., Zvonkin A. K., Graphs on surfaces and their applications, With an appendix by Don B. Zagier, Low-Dimensional Topology, II, Encyclopaedia Math. Sci., 141, Springer-Verlag, Berlin, 2004 | MR | Zbl

[9] Maskit B., Kleinian groups, Grundlehren Math. Wiss., 287, Springer-Verlag, Berlin, 1988 | MR | Zbl

[10] Oesterlé J., “Dessins d'enfants”, Séminaire Bourbaki, V. 2001/2002, No 907, ix, Astérisque, 290, 2003, 285–305 | MR | Zbl

[11] Schneps L. (ed.), The Grothendieck theory of dessins d'enfants, Papers from the Conference on Dessins d'Enfants held in Luminy (April 19–24, 1993), London Math. Soc. Lecture Note Ser., 200, Cambridge Univ. Press, Cambridge, 1994 | MR

[12] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003 | MR