On finite simply reducible groups
Algebra i analiz, Tome 19 (2007) no. 6, pp. 86-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite $G$ group is said to be simply reducible ($SR$-group) if it has the following two properties: 1) each element of $G$ is conjugate to its inverse; 2) the tensor product of every two irreducible representations is decomposed as a sum of irreducible representations of $G$ with multiplicities not exceeding 1. It is proved that a finite $SR$-group is solvable if it has no composition factors isomorphic to the alternating groups $A_5$ or $A_6$.
Keywords: Group, subgroup, irreducible representation, character, tensor product, real element.
@article{AA_2007_19_6_a3,
     author = {L. S. Kazarin and V. V. Yanishevskii},
     title = {On finite simply reducible groups},
     journal = {Algebra i analiz},
     pages = {86--116},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_6_a3/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - V. V. Yanishevskii
TI  - On finite simply reducible groups
JO  - Algebra i analiz
PY  - 2007
SP  - 86
EP  - 116
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_6_a3/
LA  - ru
ID  - AA_2007_19_6_a3
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A V. V. Yanishevskii
%T On finite simply reducible groups
%J Algebra i analiz
%D 2007
%P 86-116
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_6_a3/
%G ru
%F AA_2007_19_6_a3
L. S. Kazarin; V. V. Yanishevskii. On finite simply reducible groups. Algebra i analiz, Tome 19 (2007) no. 6, pp. 86-116. http://geodesic.mathdoc.fr/item/AA_2007_19_6_a3/

[1] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR

[2] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[3] Kazarin L. S., Yanishevskii V. V., “$SR$-gruppy poryadka $2^np$”, Matematika v Yaroslavskom universitete, Yaroslavl, 2006, 257–262 | MR

[4] Kostrikin A. I., Vvedenie v algebru. Ch. 3. Osnovnye struktury algebry, Nauka, M., 2000 | MR

[5] Strunkov S. P., “O raspolozhenii kharakterov prosto privodimykh grupp”, Matem. zametki, 31:3 (1982), 357–361 | MR | Zbl

[6] Khamermesh M., Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966 | Zbl

[7] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[8] Bierbrauer J., “The uniformly $3$-homogeneous subsets of $PGL(2,q)$”, J. Algebraic Combin., 4 (1995), 99–102 | DOI | MR | Zbl

[9] Carter R. W., Finite groups of Lie type. Conjugacy classes and complex characters, John Wiley and Sons, Inc., New York, 1985 | MR | Zbl

[10] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups, Oxford Univ. Press, Eynsham, 1985 ; http://brauer.maths.qmul.ac.uk/Atlas/v3/ | MR | Zbl

[11] Dixon J. D., “The Fitting subgroup of a linear solvable group”, J. Austral. Math. Soc., 7 (1967), 417–424 | DOI | MR | Zbl

[12] Isaacs I. M., Character theory of finite groups, Pure Appl. Math., 69, Acad. Press, New York–London, 1976 | MR | Zbl

[13] Gallagher P. X., “The number of conjugacy classes in a finite group”, Math. Z., 118 (1970), 175–179 | DOI | MR | Zbl

[14] The GAP Group, GAP – groups, algorithms and programming, version 4.4.9, Aachen, St. Andrews, 2006; http://www.gap-system.org

[15] Kazarin L. S., Sagirov I. A., “On degrees of irreducible characters of finite simple groups”, Algebra Topology, Proc. Steklov Inst. Math., suppl. 2, 2001, S71–S81 | MR | Zbl

[16] Kovács L. G., Robinson G. R., “On the number of conjugacy classes of a finite group”, J. Algebra, 160 (1993), 441–460 | DOI | MR | Zbl

[17] Liebeck M. W., Praeger C. E., Saxl J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 86, no. 432, 1990 | MR

[18] Liebeck M., Pyber L., “Upper bounds for the number of conjugacy classes of a finite group”, J. Algebra, 198 (1997), 538–562 | DOI | MR | Zbl

[19] Macdonald I. G., “Numbers of conjugacy classes in some finite classical groups”, Bull. Austral. Math. Soc., 23:1 (1981), 23–48 | DOI | MR | Zbl

[20] McKay J., “The non-abelian simple groups $G$, $|G|\le10^6$ – character tables”, Comm. Algebra, 7:13 (1979), 1407–1445 | DOI | MR | Zbl

[21] Spaltenstein N., “Caractères unipotents de $^3D_4(F_q)$”, Comment. Math. Helv., 57 (1982), 679–691 | DOI | MR