Mean value theorems for automorphic $L$-functions
Algebra i analiz, Tome 19 (2007) no. 5, pp. 246-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a holomorphic Hecke eigencuspform of even weight $k\ge 12$ for $\mathrm{SL}(2, \mathbb{Z})$ and let $L(s,\mathrm{sym}^2f)$ be the symmetric square $L$-function of $f$. Let $C(x)$ be the summatory function of the coefficients of $L(s,\mathrm{sym}^2 f)$. The true order is found for $$ \int_0^x C(y)^2\,dy. $$
Keywords: Symmetric square $L$-function, summatory function, Euler product, Voronoi formula, mean value.
@article{AA_2007_19_5_a9,
     author = {O. M. Fomenko},
     title = {Mean value theorems for automorphic $L$-functions},
     journal = {Algebra i analiz},
     pages = {246--264},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a9/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Mean value theorems for automorphic $L$-functions
JO  - Algebra i analiz
PY  - 2007
SP  - 246
EP  - 264
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a9/
LA  - ru
ID  - AA_2007_19_5_a9
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Mean value theorems for automorphic $L$-functions
%J Algebra i analiz
%D 2007
%P 246-264
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a9/
%G ru
%F AA_2007_19_5_a9
O. M. Fomenko. Mean value theorems for automorphic $L$-functions. Algebra i analiz, Tome 19 (2007) no. 5, pp. 246-264. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a9/

[1] Shimura G., “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc. (3), 31 (1975), 79–98 | DOI | MR | Zbl

[2] Rankin R. A., “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II: The order of the Fourier coefficients of the integral modular forms”, Proc. Cambridge Philos. Soc., 35 (1939), 357–372 | DOI | MR | Zbl

[3] Selberg A., “Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist”, Arch. Math. Naturvid., 43 (1940), 47–50 | MR

[4] Gelbart S., Shahidi F., Analytic properties of automorphic $L$-functions, Acad. Press, Inc., Boston, MA, 1988 | MR | Zbl

[5] Walficz A., “Über die Koeffizientensummen einiger Modulformen”, Math. Ann., 108 (1933), 75–90 | DOI | MR

[6] Fomenko O. M., “Tozhdestva, vklyuchayuschie koeffitsenty avtomorfnykh $L$-funktsii”, Zap. nauchn. sem. POMI, 314, 2004, 247–256 | MR | Zbl

[7] Chandrasekharan K., Narasimhan R., “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl

[8] Jutila M., Lectures on a method in the theory of exponential sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer-Verlag, Berlin, 1987 | MR

[9] Ivić A., “Large values of certain number-theoretic error terms”, Acta Arith., 56 (1990), 135–159 | MR | Zbl

[10] Lau Y.-K., “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl

[11] Fomenko O. M., “Povedenie srednikh Rissa koeffitsientov $L$-funktsii simmetricheskogo kvadrata”, Zap. nauchn. sem. POMI, 337, 2006, 274–286 | Zbl

[12] Ivić A., Matsumoto K., Tanigawa Y., “On Riesz means of the coefficients of the Rankin–Selberg series”, Math. Proc. Cambridge Philos. Soc., 127 (1999), 117–131 | DOI | MR | Zbl

[13] Ivić A., “On some mean square estimates in the Rankin–Selberg problem”, Appl. Anal. and Discrete Math., 1 (2007), 1–11 | MR

[14] Titchmarsh E. C., The theory of the Riemann zeta-function, 2nd ed., Clarendon Press, Oxford, 1986 | MR | Zbl

[15] Ivić A., The Riemann zeta-function, Wiley, New York, 1985 | MR | Zbl

[16] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, 367–385 ; Collected papers, V. 2, Springer-Verlag, Berlin, 1991, 47–63 | MR | Zbl

[17] Cramér H., “Über zwei Sätze des Herrn G. H. Hardy”, Math. Z., 15 (1922), 201–210 | DOI | MR | Zbl

[18] Tong K.-C., “On divisor problems, I, III”, Acta Math. Sinica, 5 (1955), 313–324 ; 6 (1956), 515–541 | MR | Zbl | Zbl

[19] Heath-Brown D. R., “Mean values of the zeta-function and divisor problems”, Recent Progresss in Analytic Number Theory, V. 1 (Durham, 1979), Acad. Press, London-New York, 1981, 115–119 | MR

[20] Redmond D., “Mean value theorems for a class of Dirichlet series”, Pacific J. Math., 78 (1978), 191–231 | MR | Zbl

[21] Hafner J. L., “On the representation of the summatory functions of a class of arithmetical functions”, Analytic Number Theory (Philadelphia, 1980), Lecture Notes in Math., 899, Springer, Berlin–New York, 1981, 148–165 | MR

[22] Gelbart S., Jacquet H., “A relation between automorhphic representations of GL(2) and GL(3)”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 471–542 | MR | Zbl

[23] Hoffstein J., Lockhart P., “Coefficients of Maass forms and the Siegel zero”, Ann. of Math. (2), 140 (1994), 161–181 | DOI | MR | Zbl

[24] Bump D., Ginzburg D., “Symmetric square $L$-functions on $GL(r)$”, Ann. of Math. (2), 136 (1992), 137–205 | DOI | MR | Zbl

[25] Titchmarsh E. C., The zeta-function of Riemann, Cambridge Univ. Press, London, 1930 | Zbl

[26] Davenport H., “Note on mean-value theorems for the Riemann zeta-function”, J. London Math. Soc., 10 (1935), 136–138

[27] Ivić A., “On mean values of some zeta-functions in the critical strip”, J. Théor. Nombres Bordeaux, 15 (2003), 163–178 | MR | Zbl

[28] Matsumoto K., “Liftings and mean value theorems for automorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl

[29] Lau Y.-K., Tsang K.-M., “Mean square of the remainder term in the Dirichlet divisor problem”, J. Théor. Nombres Bordeaux, 7 (1995), 75–92 | MR | Zbl