Some logical invariants of algebras and logical relations between algebras
Algebra i analiz, Tome 19 (2007) no. 5, pp. 214-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be an arbitrary variety of algebras and $H$ an algebra in $\Theta$. Along with algebraic geometry in $\Theta$ over the distinguished algebra $H$, a logical geometry in $\Theta$ over $H$ is considered. This insight leads to a system of notions and stimulates a number of new problems. Some logical invariants of algebras $H\in\Theta$ are introduced and logical relations between different $H_1$ and $H_2$ in $\Theta$ are analyzed. The paper contains a brief review of ideas of logical geometry (§ 1), the necessary material from algebraic logic (§ 2), and a deeper introduction to the subject (§ 3). Also, a list of problems is given.
Keywords: Variety of algebras, algebraic geometry, logical geometry.
@article{AA_2007_19_5_a8,
     author = {B. Plotkin and G. Zhitomirski},
     title = {Some logical invariants of algebras and logical relations between algebras},
     journal = {Algebra i analiz},
     pages = {214--245},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a8/}
}
TY  - JOUR
AU  - B. Plotkin
AU  - G. Zhitomirski
TI  - Some logical invariants of algebras and logical relations between algebras
JO  - Algebra i analiz
PY  - 2007
SP  - 214
EP  - 245
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a8/
LA  - en
ID  - AA_2007_19_5_a8
ER  - 
%0 Journal Article
%A B. Plotkin
%A G. Zhitomirski
%T Some logical invariants of algebras and logical relations between algebras
%J Algebra i analiz
%D 2007
%P 214-245
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a8/
%G en
%F AA_2007_19_5_a8
B. Plotkin; G. Zhitomirski. Some logical invariants of algebras and logical relations between algebras. Algebra i analiz, Tome 19 (2007) no. 5, pp. 214-245. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a8/

[1] Chang C. C., Keisler H. J., Model theory, Stud. Logic Found. Math., 73, North-Holland Publ. Co., New York, 1973 | MR | Zbl

[2] Grossberg R., “Classification theory for abstract elementary classes”, Logic and Algebra, Contemp. Math., 302, ed. Yi Zhang, Amer. Math. Soc., Providence, RI, 2002, 165–204 | MR

[3] Halmos P. R., Algebraic logic, Chelsea Publ. Co., New York, 1962 | MR | Zbl

[4] Henkin L., Monk J. D., Tarski A., Cylindric algebras, Part II, Stud. Logic Found. Math., 115, North-Holland Publ. Co., Amsterdam, 1985 | MR | Zbl

[5] Higgins P. J., “Algebras with a scheme of operators”, Math. Nachr., 27 (1963), 115–132 | DOI | MR | Zbl

[6] MacLane S., Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York-Berlin, 1971 | MR

[7] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups, I”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[8] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[9] Plotkin B., “Varieties of algebras and algebraic varieties”, part B, Israel J. Math., 96 (1996), 511–522 | DOI | MR | Zbl

[10] Plotkin B., “Algebras with the same (algebraic) geometry”, Tr. MIAN, 242, 2003, 176–207 ; http://arXiv.org/abs/math.GM/0210194 | MR | Zbl

[11] Plotkin B. I., “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[12] Plotkin B., Seven lectures on the universal algebraic geometry, Preprint, 2002; , 87 pp. arXiv: math, GM/0204245

[13] Plotkin B., “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Siberian Adv. Math., 7:2 (1997), 64–97 | MR | Zbl

[14] Plotkin B., “Algebraic geometry in first order logic”, Algebra i geometriya, Sovrem. mat. i ee pril., 22, 2004, 16–62 ; http://arXiv.org/abs/math.GM/0312485 | MR

[15] Plotkin B., “Some results and problems related to universal algebraic geometry”, Internat. J. Algebra Comput., 17:5–6 (2007), 1133–1164 | DOI | MR | Zbl

[16] Plotkin B., Plotkin T., “An algebraic approach to knowledge base models informational equivalence”, Acta Appl. Math., 89:1–3, 109–134 (2005–2006) ; http://arXiv.org/abs/math.GM/0312428 | MR | Zbl