Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_5_a7, author = {K. I. Pimenov}, title = {Traces in oriented homology theories of algebraic varieties}, journal = {Algebra i analiz}, pages = {179--213}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a7/} }
K. I. Pimenov. Traces in oriented homology theories of algebraic varieties. Algebra i analiz, Tome 19 (2007) no. 5, pp. 179-213. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a7/
[1] Nenashev A., “Projective bundle theorem in homology theories with Chern structure”, Doc. Math., 9 (2004), 487–497 | MR | Zbl
[2] Panin I., “Oriented cohomology theories of algebraic varieties”, $K$-Theory, 30:3 (2003), 265–314 | MR | Zbl
[3] Panin I., Smirnov A., Push-forwards in oriented cohomology theories of algebraic varieties, http://www.math.uiuc.edu/K-theory/0459/2000
[4] Panin I., Axiomatic, Enriched, and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl
[5] Pimenov K., Traces in oriented homology theories, http://www.math.uiuc.edu/K-theory/0724/2005
[6] Panin I., Yagunov S., Poincare duality for algebraic varieties, http://www.math.uiuc.edu/K-theory/0576/2002
[7] Solynin A., Chern and Thom elements in the representable cohomology theories, Preprint POMI-03/2004
[8] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetics and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C. Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl
[9] Voevodsky V., The Milnor conjecture, http://www.math.uiuc.edu/K-theory/0170/1996
[10] Voevodsky V., “$A^1$-homotopy theory”, Doc. Math., Extra Vol. I (1998), 579–604, electronic | MR | Zbl
[11] Voevodsky V., Cancellation theorem, http://www.math.uiuc.edu/K-theory/0541/2002