Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
Algebra i analiz, Tome 19 (2007) no. 5, pp. 159-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

By definition, the “canonical dimension” of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group $\mathbf{PGL}_6$ is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.
Keywords: Algebraic group, projective linear group, rational surfaces, birational classification, canonical dimension.
@article{AA_2007_19_5_a6,
     author = {J.-L. Colliot-Th\'el\`ene and N. A. Karpenko and A. S. Merkur'ev},
     title = {Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$},
     journal = {Algebra i analiz},
     pages = {159--178},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/}
}
TY  - JOUR
AU  - J.-L. Colliot-Thélène
AU  - N. A. Karpenko
AU  - A. S. Merkur'ev
TI  - Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
JO  - Algebra i analiz
PY  - 2007
SP  - 159
EP  - 178
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/
LA  - ru
ID  - AA_2007_19_5_a6
ER  - 
%0 Journal Article
%A J.-L. Colliot-Thélène
%A N. A. Karpenko
%A A. S. Merkur'ev
%T Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
%J Algebra i analiz
%D 2007
%P 159-178
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/
%G ru
%F AA_2007_19_5_a6
J.-L. Colliot-Thélène; N. A. Karpenko; A. S. Merkur'ev. Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$. Algebra i analiz, Tome 19 (2007) no. 5, pp. 159-178. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/

[1] Artin M., “Lipman's proof of resolution of singularities for surfaces”, Arithmetic Geometry (Storrs, Conn., 1984), eds. G. Cornell, J. H. Silverman, Springer-Verlag, New York, 1986, 267–287 | MR

[2] Berhuy G., Reichstein Z., “On the notion of canonical dimension for algebraic groups”, Adv. Math., 198:1 (2005), 128–171 | DOI | MR | Zbl

[3] Colliot-Thélène J.-L., Cours à l'IHP en 1999, notes available on the author's homepage, http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html

[4] Coombes K. R., “Every rational surface is separably split”, Comm. Math. Helv., 63 (1988), 305–311 | DOI | MR | Zbl

[5] Enriques F., “Sulle irrazionalit à da cui può farsi dipendere la risoluzione dúnéquazione algebrica $f(x,y,z)=0$ con funzioni razionali di due parametri”, Math. Ann., 49 (1897), 1–23 | DOI | MR | Zbl

[6] Iskovskikh V. A., “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 19–43 | MR | Zbl

[7] Karpenko N. A., “On anisotropy of orthogonal involutions”, J. Ramanujan Math. Soc., 15:1 (2000), 1–22 | MR | Zbl

[8] Karpenko N., Merkurjev A., “Canonical $p$-dimension of algebraic groups”, Adv. Math., 205 (2006), 410–433 | DOI | MR | Zbl

[9] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, With a preface in French by J. Tits, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[10] Kollár J., Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996 | MR

[11] Lipman J., “Introduction to resolution of singularities”, Algebraic Geometry (Humboldt State Univ., Arcata, CA, 1974), Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, RI, 1975, 187–230 | MR

[12] Lipman J., “Desingularization of two-dimensional schemes”, Ann. of Math. (2), 107 (1978), 151–207 | DOI | MR | Zbl

[13] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[14] Merkurjev A., “Steenrod operations and degree formulas”, J. Reine Angew. Math., 565 (2003), 13–26 | MR | Zbl

[15] Merkurjev A. S., Tignol J.-P., “The multipliers of similitudes and the Brauer group of homogeneous varieties”, J. Reine Angew. Math., 461 (1995), 13–47 | MR | Zbl

[16] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116 (1982), 133–176 | DOI | MR | Zbl

[17] Rost M., Remarks on Jordan algebras (dim 9, deg 3), cubic surfaces, and del Pezzo surfaces (deg 6), http://www.math.uni-bielefeld.de/~rost/binary.html

[18] Schofield A., Van den Bergh M., “The index of a Brauer class on a Brauer–Severi variety”, Trans. Amer. Math. Soc., 333:2 (1992), 729–739 | DOI | MR | Zbl

[19] Zainoulline K., “Canonical $p$-dimensions of algebraic groups and degrees of basic polynomial invariants”, Bull. London Math. Soc., 39:2 (2007), 301–304 | DOI | MR | Zbl