Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_5_a6, author = {J.-L. Colliot-Th\'el\`ene and N. A. Karpenko and A. S. Merkur'ev}, title = {Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$}, journal = {Algebra i analiz}, pages = {159--178}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/} }
TY - JOUR AU - J.-L. Colliot-Thélène AU - N. A. Karpenko AU - A. S. Merkur'ev TI - Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$ JO - Algebra i analiz PY - 2007 SP - 159 EP - 178 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/ LA - ru ID - AA_2007_19_5_a6 ER -
J.-L. Colliot-Thélène; N. A. Karpenko; A. S. Merkur'ev. Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$. Algebra i analiz, Tome 19 (2007) no. 5, pp. 159-178. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a6/
[1] Artin M., “Lipman's proof of resolution of singularities for surfaces”, Arithmetic Geometry (Storrs, Conn., 1984), eds. G. Cornell, J. H. Silverman, Springer-Verlag, New York, 1986, 267–287 | MR
[2] Berhuy G., Reichstein Z., “On the notion of canonical dimension for algebraic groups”, Adv. Math., 198:1 (2005), 128–171 | DOI | MR | Zbl
[3] Colliot-Thélène J.-L., Cours à l'IHP en 1999, notes available on the author's homepage, http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html
[4] Coombes K. R., “Every rational surface is separably split”, Comm. Math. Helv., 63 (1988), 305–311 | DOI | MR | Zbl
[5] Enriques F., “Sulle irrazionalit à da cui può farsi dipendere la risoluzione dúnéquazione algebrica $f(x,y,z)=0$ con funzioni razionali di due parametri”, Math. Ann., 49 (1897), 1–23 | DOI | MR | Zbl
[6] Iskovskikh V. A., “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 19–43 | MR | Zbl
[7] Karpenko N. A., “On anisotropy of orthogonal involutions”, J. Ramanujan Math. Soc., 15:1 (2000), 1–22 | MR | Zbl
[8] Karpenko N., Merkurjev A., “Canonical $p$-dimension of algebraic groups”, Adv. Math., 205 (2006), 410–433 | DOI | MR | Zbl
[9] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, With a preface in French by J. Tits, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[10] Kollár J., Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996 | MR
[11] Lipman J., “Introduction to resolution of singularities”, Algebraic Geometry (Humboldt State Univ., Arcata, CA, 1974), Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, RI, 1975, 187–230 | MR
[12] Lipman J., “Desingularization of two-dimensional schemes”, Ann. of Math. (2), 107 (1978), 151–207 | DOI | MR | Zbl
[13] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR
[14] Merkurjev A., “Steenrod operations and degree formulas”, J. Reine Angew. Math., 565 (2003), 13–26 | MR | Zbl
[15] Merkurjev A. S., Tignol J.-P., “The multipliers of similitudes and the Brauer group of homogeneous varieties”, J. Reine Angew. Math., 461 (1995), 13–47 | MR | Zbl
[16] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116 (1982), 133–176 | DOI | MR | Zbl
[17] Rost M., Remarks on Jordan algebras (dim 9, deg 3), cubic surfaces, and del Pezzo surfaces (deg 6), http://www.math.uni-bielefeld.de/~rost/binary.html
[18] Schofield A., Van den Bergh M., “The index of a Brauer class on a Brauer–Severi variety”, Trans. Amer. Math. Soc., 333:2 (1992), 729–739 | DOI | MR | Zbl
[19] Zainoulline K., “Canonical $p$-dimensions of algebraic groups and degrees of basic polynomial invariants”, Bull. London Math. Soc., 39:2 (2007), 301–304 | DOI | MR | Zbl