The normalizer of Chevalley groups of type $\mathrm{E}_6$
Algebra i analiz, Tome 19 (2007) no. 5, pp. 37-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the simply connected Chevalley group $G(\mathrm{E}_6,R)$ of type $\mathrm{E}_6$ in a 27-dimensional representation. The main goal is to establish that the following four groups coincide: the normalizer of the Chevally group $G(\mathrm{E}_6,R)$ itself, the normalizer of its elementary subgroup $E(\mathrm{E}_6,R)$, the transporter of $E(\mathrm{E}_6,R)$ in $G(\operatorname{E}_6,R)$, and the extended Chevalley group $\overline G(\mathrm{E}_6,R)$. This is true over an arbitrary commutative ring $R$, all normalizers and transporters being taken in $\mathrm{GL}(27,R)$. Moreover, $\overline G(\mathrm{E}_6,R)$ is characterized as the stabilizer of a system of quadrics. This result is classically known over algebraically closed fields; in the paper it is established that the corresponding scheme over $\mathbb{Z}$ is smooth, which implies that the above characterization is valid over an arbitrary commutative ring. As an application of these results, we explicitly list equations a matrix $g\in\mathrm{GL}(27,R)$ must satisfy in order to belong to $\overline G(\mathrm{E}_6,R)$. These results are instrumental in a subsequent paper of the authors, where overgroups of exceptional groups in minimal representations will be studied.
Keywords: Chevalley groups, elementary subgroups, normal subgroups, standard description, minimal module, parabolic subgroups, decomposition of unipotents, root elements, orbit of the highest weight vector, the proof from the Book.
@article{AA_2007_19_5_a1,
     author = {N. A. Vavilov and A. Yu. Luzgarev},
     title = {The normalizer of {Chevalley} groups of type $\mathrm{E}_6$},
     journal = {Algebra i analiz},
     pages = {37--64},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. Yu. Luzgarev
TI  - The normalizer of Chevalley groups of type $\mathrm{E}_6$
JO  - Algebra i analiz
PY  - 2007
SP  - 37
EP  - 64
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a1/
LA  - ru
ID  - AA_2007_19_5_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. Yu. Luzgarev
%T The normalizer of Chevalley groups of type $\mathrm{E}_6$
%J Algebra i analiz
%D 2007
%P 37-64
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a1/
%G ru
%F AA_2007_19_5_a1
N. A. Vavilov; A. Yu. Luzgarev. The normalizer of Chevalley groups of type $\mathrm{E}_6$. Algebra i analiz, Tome 19 (2007) no. 5, pp. 37-64. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a1/

[1] Abe E., “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[3] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[4] Burbaki N., Gruppy i algebry Li, Gl. VII, VIII, Mir, M., 1978 | MR

[5] Vavilov N. A., “Vesovye elementy grupp Shevalle”, Dokl. AN SSSR, 298:3 (1988), 524–527 | MR | Zbl

[6] Vavilov N. A., “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. mat. o-va, 1, 1990, 64–109 | MR

[7] Vavilov N. A., “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR

[8] Vavilov N. A., “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85 | MR

[9] Vavilov N. A., Gavrilovich M. R., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[10] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: Dokazatelstvo iz knigi”, Zap. nauchn. sem. POMI, 330, 2006, 36–76 | MR | Zbl

[11] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm{E}_6$ v 27-mernom predstavlenii”, Zap. nauchn. sem. POMI, 338, 2006, 5–68 | Zbl

[12] Vavilov N. A., Nikolenko S. I., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR

[13] Vavilov N. A., Petrov V. A., “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR | Zbl

[14] Vavilov N. A., Petrov V. A., “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR

[15] Vavilov N. A., Perelman E. Ya., “Polivektornoe predstavlenie $\mathrm{GL}_n$”, Zap nauchn. sem. POMI, 338, 2006, 69–97 | MR | Zbl

[16] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Gruppy i algebry Li – 3, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 | MR

[17] Luzgarev A. Yu., “O nadgruppakh $\mathrm{E}(\mathrm{E}_6,R)$ i $\mathrm{E}(\mathrm{E}_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauch. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[18] Semenov N. S., “Odin argument v polzu gurvitsevosti $\mathrm{G}_{\mathrm{SC}}(\mathrm{E}_6,\mathrm{F}_q)$”, Zap. nauchn. sem. POMI, 305, 2003, 228–237 | MR

[19] Springer T. A., “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya-4, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR

[20] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[21] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[22] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[23] Shevalle K., “O nekotorykh prostykh gruppakh”, Matematika, Period. sb. perev. in. statei 2, 1, 1958, 3–53

[24] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21:3 (1969), 474–494 | MR | Zbl

[25] Abe E., “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR

[26] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $K$-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | MR

[27] Abe E., Hurley J., “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[28] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | MR | Zbl

[29] Aschbacher M., “The 27-dimensional module for $\mathrm{E}_6$”, I–IV, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc. (2), 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 191 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[30] Aschbacher M., “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988) ; 417–465 | MR | Zbl

[31] Aschbacher M., “The geometry of trilinear forms”, Finite Geometries, Buildings and Related Topics (Pingree Park, CO, 1988), Oxford Univ. Press, New York, 1990, 75–84 | MR

[32] Atsuyama K., “On the embedding of the Cayley plane into the exceptional Lie group of type $\mathrm{F}_4$”, Kodai Math. Sem. Rep., 28 (1976–1977), 129–134 | DOI | MR

[33] Bak A., Vavilov N., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[34] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[35] Bak A., Vavilov N., “Cubic form parameters” (to appear)

[36] Berman S., Moody R. V., “Extensions of Chevalley groups”, Israel J. Math., 22:1 (1975), 42–51 | DOI | MR | Zbl

[37] Brown R. B., “Groups of type $\mathrm{E}_7$”, J. Reine Angew. Math., 236:1 (1969), 79–102 | MR | Zbl

[38] Carter R. W., Simple groups of Lie type, Pure Appl. Math., 28, Wiley, London et al., 1972 | MR

[39] Cohen A. M., Cooperstein B. N., “The 2-spaces of the standard $\mathrm{E}_6(q)$-module”, Geom. Dedicata, 25:1–3 (1988) ; 467–480 | MR

[40] Cohen A. M., Cushman R. H., “Gröbner bases and standard monomial theory”, Computational Algebraic Geometry (Nice, 1992), Progr. Math., 109, Birkhäuser, Boston, MA, 1993, 41–60 | MR | Zbl

[41] Cohen A. M., Wales D. B., “Finite subgroups of $\mathrm{F}_4(\mathbb C)$ and $\mathrm{E}_6(\mathbb C)$”, Proc. London Math. Soc. (3), 74 (1997), 105–150 | DOI | MR | Zbl

[42] Cooperstein B. N., “The fifty-six-dimensional module for $\mathrm{E}_7$. I: A four form for $\mathrm{E}_7$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl

[43] Dixon J. D., “Rigid embeddings of simple groups in the general linear group”, Canad. J. Math., 29:2 (1977), 384–391 | MR | Zbl

[44] Faulkner J. R., Ferrar J. C., “Exceptional Lie algebras and related algebraic and geometric structures”, Bull. London Math. Soc., 9 (1977), 1–35 | DOI | MR | Zbl

[45] Garibaldi R. S., “Structurable algebras and groups of type $\mathrm{E}_6$ and $\mathrm{E}_7$”, J. Algebra, 236:2 (2001), 651–691 | DOI | MR | Zbl

[46] Garibaldi R. S., Cohomological invariants: exceptional groups and Spin groups with an appendix by D. W. Hoffmann, Preprint Emory Univ. Atlanta, 2006 | MR

[47] Garibaldi R. S., Peterson H. P., Groups of outer type $\mathrm{E}_6$ with trivial Tits algebras, arXiv: /math.GR/0511229v1

[48] Griess R. L., “A Moufang loop, the exceptional Jordan algebra, and a cubic form in 27 variables”, J. Algebra, 131 (1990), 281–293 | DOI | MR | Zbl

[49] Hahn A., O'Meara O. T., The classical groups and $K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | MR | Zbl

[50] Haris S. J., “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93:1 (1971), 75–106 | DOI | MR | Zbl

[51] Hazrat R., Vavilov N., “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[52] Hée J.-Y., “Groupes de Chevalley et groupes classiques”, Seminar on Finite Groups, V. II, Publ. Math. Univ. Paris VII, 17, Univ. Paris VII, Paris, 1984,, 1–54 | MR

[53] Iliev A., Manivel L., “The Chow ring of the Cayley plane”, Compositio Math., 141 (2005), 146–160 | DOI | MR | Zbl

[54] Jacobson N., Structure and representations of Jordan algebras, Amer.Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[55] Lichtenstein W., “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[56] Mars J. G. M., “Les nombres de Tamagawa de certains groupes exceptionnels”, Bull. Soc. Math. France, 94 (1966), 97–140 | MR | Zbl

[57] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[58] Petrov V. A., “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[59] Petrov V., Semenov N., Zainoulline K., Zero cycles on a twisted Cayley plane, arXiv: /math.AG/0508200v2

[60] Plotkin E. B., “On the stability of $K_1$-functor for Chevalley groups of type $\mathrm{E}_6$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[61] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[62] Seitz G. M., The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc., 67, no. 365, 1987 | MR

[63] Springer T. A., “The projective octave plane, I, II”, Indag. Math., 22 (1960), 74–101 | MR

[64] Springer T. A., “Characterization of a class of cubic forms”, Indag. Math., 24 (1962), 259–265 | MR

[65] Springer T. A., “On the geometric algebra of the octave planes”, Indag. Math., 24 (1962), 451–468 | MR

[66] Springer T. A., “Some groups of type $\mathrm{E}_7$”, Nagoya Math. J., 182 (2006), 259–284 | MR | Zbl

[67] Springer T. A., Veldkamp F. D., Octonions, Jordan algebras and exceptional groups, Springer-Verlag, Berlin, 2000 | Zbl

[68] Stein M. R., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[69] Stein M. R., “Stability theorems for $K_1$, $K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[70] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[71] Taddei G., “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory, Part II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | MR

[72] Vaserstein L. N., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | MR | Zbl

[73] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[74] Vavilov N. A., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[75] Vavilov N. A., “An $\mathrm{A}_3$-proof of structure theorems for Chevalley groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$”, J. Pure Appl. Algebra (to appear)

[76] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[77] Waterhouse W. C., Introduction to affine group schemes, Grad. Texts in Math., 66, Springer-Verlag, New York-Berlin, 1979 | MR | Zbl

[78] Waterhouse W. C., “Automorphisms of quotients of $\prod\mathrm{GL}(n_i)$”, Pacific J. Math., 102 (1982), 221–233 | MR | Zbl

[79] Waterhouse W. C., “Automorphisms of $\operatorname{det}(X_{ij})$: the group scheme approach”, Adv. Math., 65:2 (1987), 171–203 | DOI | MR | Zbl