Arrangements of an $M$-quintic with respect to a~conic that maximally intersects its odd branch
Algebra i analiz, Tome 19 (2007) no. 4, pp. 174-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain assumptions, the arrangements mentioned in the title are classified up to isotopy. Their algebraic realizability is discussed.
Keywords: Plane projective real curve, almost complex structure, isotopy, algebraic (un)realizability.
@article{AA_2007_19_4_a7,
     author = {S. Yu. Orevkov},
     title = {Arrangements of an $M$-quintic with respect to a~conic that maximally intersects its odd branch},
     journal = {Algebra i analiz},
     pages = {174--242},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a7/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Arrangements of an $M$-quintic with respect to a~conic that maximally intersects its odd branch
JO  - Algebra i analiz
PY  - 2007
SP  - 174
EP  - 242
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a7/
LA  - ru
ID  - AA_2007_19_4_a7
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Arrangements of an $M$-quintic with respect to a~conic that maximally intersects its odd branch
%J Algebra i analiz
%D 2007
%P 174-242
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a7/
%G ru
%F AA_2007_19_4_a7
S. Yu. Orevkov. Arrangements of an $M$-quintic with respect to a~conic that maximally intersects its odd branch. Algebra i analiz, Tome 19 (2007) no. 4, pp. 174-242. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a7/

[1] Brugallé E., A bound on the number of jumps of real algebraic curves in $\Sigma_n$, Preprint, 2006

[2] Degtyarev A. I., Kharlamov V. M., “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: Du côté de chez Rokhlin”, UMN, 55:4(334) (2000), 129–212 | MR | Zbl

[3] Fiedler T., Congruence $\mathrm{mod}16$ for symmetric $M$-curves, Kserokopiya rukopisnogo teksta

[4] Fiedler-LeTouzé S., Orevkov S. Yu., “A flexible affine $M$-sextic which is algebraically unrealizable”, J. Algebraic Geom., 11 (2002), 293–310 | MR

[5] Florens V., “On the Fox-Milnor theorem for the Alexander polynomial of links”, Int. Math. Res. Not., 2004, no. 2, 55–67 | DOI | MR | Zbl

[6] Guschin M. A., “Postroeniya nekotorykh raspolozhenii koniki i $M$-kvintiki s odnoi tochkoi na beskonechnosti”, Vestn. NNGU. Ser. mat., 2004, no. 1(2), 43–52

[7] Guschin M. A., “Konika i $M$-kvintika s odnoi tochkoi na beskonechnosti”, Zap. nauchn. sem. POMI, 329, 2005, 14–27 | Zbl

[8] Kharlamov V. M., Viro O. Ya., “Extensions of the Gudkov-Rohlin congruence, Topology and Geometry-Rohlin Seminar”, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 357–406 | MR

[9] Korchagin A., Polotovskii G. M., “On arrangements of a plane real quintic curve with respect to a pair of lines”, Commun. Contemp. Math., 5:1 (2003), 1–24 | DOI | MR | Zbl

[10] Korchagin A. B., Polotovskii G. M., “O raspolozhenii ploskoi veschestvennoi kvintiki otnositelno pary pryamykh, II” (to appear)

[11] Korchagin A. B., Shustin E. I., “Affinnye krivye stepeni 6 i ustraneniya nevyrozhdennoi shestikratnoi osoboi tochki”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1181–1199 | MR

[12] Natanzon S. M., “Avtomorfizmy rimanovoi poverkhnosti $M$-krivoi”, Funkts. analiz i ego pril., 12:3 (1978), 82–83 | MR | Zbl

[13] Orevkov S. Yu., “Link theory and oval arrangements of real algebraic curves”, Topology, 38 (1999), 779–810 | DOI | MR | Zbl

[14] Orevkov S. Yu., “Proektivnye koniki i $M$-kvintiki v obschem polozhenii s maksimalno peresekayuscheisya paroi ovalov”, Matem. zametki, 65:4 (1999), 632–635 | MR

[15] Orevkov S. Yu., “Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves”, J. Knot Theory Ramifications, 10 (2001), 1005–1023 | DOI | MR | Zbl

[16] Orevkov S. Yu., “Classification of flexible M-curves of degree 8 up to isotopy”, Geom. Funct. Anal., 12 (2002), 723–755 | DOI | MR | Zbl

[17] Orevkov S. Yu., “Riemann existence theorem and construction of real algebraic curves”, Ann. Fac. Sci. Toulouse Math. (6), 12 (2003), 517–531 | MR | Zbl

[18] Orevkov S. Yu., “Postroeniya raspolozhenii $M$-kvartiki i $M$-kubiki s maksimalno peresekayuschimisya ovalom i nechetnoi vetvyu”, Vestn. NNGU. Ser. mat. modelir. i optim. upr., 2002, no. 1(25), 12–48 | MR

[19] Orevkov S. Yu., “Quasipositivity problem for 3-braids”, Turkish J. Math., 28 (2004), 89–93 | MR | Zbl

[20] Orevkov S. Yu., Polotovskii G. M., “Proektivnye $M$-kubiki i $M$-kvartiki v obschem polozhenii s maksimalno peresekayuscheisya paroi ovalov”, Algebra i analiz, 11:5 (1999), 166–184 | MR

[21] Orevkov S. Yu., Shustin E. I., “Flexible algebraically unrealizable curves: rehabilitation of Hilbert–Rohn–Gudkov approach”, J. Reine Angew. Math., 551 (2002), 145–172 | MR | Zbl

[22] Orevkov S. Yu., Shustin E. I., “Pseudoholomorphic algebraically unrealizable curves”, Mosc. Math. J., 3 (2003), 1053–1083 | MR | Zbl

[23] Polotovskii G. M., “Katalog $M$-raspadayuschikhsya krivykh 6-go poryadka”, Dokl. AN SSSR, 236:3 (1977), 548–551 | MR | Zbl

[24] Welschinger J.-Y., “Courbes algébriques réelles et courbes flexibles sur les surfaces réglées de base $\mathbb{CP}^1$”, Proc. London Math. Soc. (3), 85 (2002), 367–392 | DOI | MR | Zbl

[25] Zvonilov V. I., “Kompleksnye topologicheskie invarianty veschestvennykh algebraicheskikh krivykh na giperboloide i ellipsoide”, Algebra i analiz, 3:5 (1991), 88–108 | MR | Zbl