Operator-valued bergman inner functions as transfer functions
Algebra i analiz, Tome 19 (2007) no. 4, pp. 146-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit construction characterizing the operator-valued Bergman inner functions is given for a class of vector-valued standard weighted Bergman spaces in the unit disk. These operator-valued Bergman inner functions act as contractive multipliers from the Hardy space into the associated Bergman space, and they have a natural interpretation as transfer functions for a related class of discrete time linear systems. This points to a new interaction between the fields of invariant subspace theory and mathematical systems theory.
Keywords: Bergman inner function, transfer function, $n$-hypercontraction, wandering subspace, standard weighted Bergman space, discrete time linear system.
@article{AA_2007_19_4_a6,
     author = {A. Olofsson},
     title = {Operator-valued bergman inner functions as transfer functions},
     journal = {Algebra i analiz},
     pages = {146--173},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/}
}
TY  - JOUR
AU  - A. Olofsson
TI  - Operator-valued bergman inner functions as transfer functions
JO  - Algebra i analiz
PY  - 2007
SP  - 146
EP  - 173
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/
LA  - en
ID  - AA_2007_19_4_a6
ER  - 
%0 Journal Article
%A A. Olofsson
%T Operator-valued bergman inner functions as transfer functions
%J Algebra i analiz
%D 2007
%P 146-173
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/
%G en
%F AA_2007_19_4_a6
A. Olofsson. Operator-valued bergman inner functions as transfer functions. Algebra i analiz, Tome 19 (2007) no. 4, pp. 146-173. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/

[1] Agler J., “The Arveson extension theorem and coanalytic models”, Integral Equations Operator Theory, 5 (1982), 608–631 | DOI | MR | Zbl

[2] Agler J., “Hypercontractions and subnormality”, J. Operator Theory, 13 (1985), 203–217 | MR | Zbl

[3] Aleman A., Richter S., Sundberg C., “Beurling's theorem for the Bergman space”, Acta Math., 177 (1996), 275–310 | DOI | MR | Zbl

[4] Ambrozie C.-G., Engliš M., Müller V., “Operator tuples and analytic models over general domains in $\mathbb{C}^n$”, J. Operator Theory, 47 (2002), 287–302 | MR | Zbl

[5] Arazy J., Engliš M., “Analytic models for commuting operator tuples on bounded symmetric domains”, Trans. Amer. Math. Soc., 355 (2003), 837–864 | DOI | MR | Zbl

[6] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR | Zbl

[7] Ball J. A., Cohen N., “de Branges–Rovnyak operator models and systems theory: a survey”, Topics in Matrix and Operator Theory (Rotterdam, 1989), Oper. Theory Adv. Appl., 50, Birkhäuser, Basel, 1991, 93–136 | MR

[8] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, V. II, Oper. Theory Adv. Appl., 63, Birkhäuser, Basel, 1993 | MR | Zbl

[9] Halmos P. R., “Normal dilations and extensions of operators”, Summa Brasil. Math., 2 (1950), 125–134 | MR | Zbl

[10] Halmos P. R., “Shifts on Hilbert spaces”, J. Reine Angew. Math., 208 (1961), 102–112 | MR | Zbl

[11] Hedenmalm H., “A factorization theorem for square area-integrable analytic functions”, J. Reine Angew. Math., 422 (1991), 45–68 | MR | Zbl

[12] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[13] Helton J. W., “Discrete time systems, operator models, and scattering theory”, J. Funct. Anal., 16 (1974), 15–38 | DOI | MR | Zbl

[14] Olofsson A., “Wandering subspace theorems”, Integral Equations Operator Theory, 51 (2005), 395–409 | DOI | MR | Zbl

[15] Olofsson A., An operator-valued Berezin transform and the class of $n$-hypercontractions, http://www.math.kth.se/~ao/

[16] Olofsson A., “A characteristic operator function for the class of $n$-hypercontractions”, J. Funct. Anal., 236 (2006), 517–545 | DOI | MR | Zbl

[17] Shimorin S. M., “Double power series and reproducing kernels”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 339–348 | MR | Zbl

[18] Shimorin S. M., “Wold-type decompositions and wandering subspaces for operators close to isometries”, J. Reine Angew. Math., 531 (2001), 147–189 | MR | Zbl

[19] Shimorin S. M., “On Beurling-type theorems in weighted $l^2$ and Bergman spaces”, Proc. Amer. Math. Soc., 131 (2003), 1777–1787 | DOI | MR | Zbl

[20] Sz.-Nagy B., Foiaş C., Harmonic analysis of operators on Hilbert space, North-Holland, New York, 1970 | MR