Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_4_a6, author = {A. Olofsson}, title = {Operator-valued bergman inner functions as transfer functions}, journal = {Algebra i analiz}, pages = {146--173}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/} }
A. Olofsson. Operator-valued bergman inner functions as transfer functions. Algebra i analiz, Tome 19 (2007) no. 4, pp. 146-173. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a6/
[1] Agler J., “The Arveson extension theorem and coanalytic models”, Integral Equations Operator Theory, 5 (1982), 608–631 | DOI | MR | Zbl
[2] Agler J., “Hypercontractions and subnormality”, J. Operator Theory, 13 (1985), 203–217 | MR | Zbl
[3] Aleman A., Richter S., Sundberg C., “Beurling's theorem for the Bergman space”, Acta Math., 177 (1996), 275–310 | DOI | MR | Zbl
[4] Ambrozie C.-G., Engliš M., Müller V., “Operator tuples and analytic models over general domains in $\mathbb{C}^n$”, J. Operator Theory, 47 (2002), 287–302 | MR | Zbl
[5] Arazy J., Engliš M., “Analytic models for commuting operator tuples on bounded symmetric domains”, Trans. Amer. Math. Soc., 355 (2003), 837–864 | DOI | MR | Zbl
[6] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR | Zbl
[7] Ball J. A., Cohen N., “de Branges–Rovnyak operator models and systems theory: a survey”, Topics in Matrix and Operator Theory (Rotterdam, 1989), Oper. Theory Adv. Appl., 50, Birkhäuser, Basel, 1991, 93–136 | MR
[8] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, V. II, Oper. Theory Adv. Appl., 63, Birkhäuser, Basel, 1993 | MR | Zbl
[9] Halmos P. R., “Normal dilations and extensions of operators”, Summa Brasil. Math., 2 (1950), 125–134 | MR | Zbl
[10] Halmos P. R., “Shifts on Hilbert spaces”, J. Reine Angew. Math., 208 (1961), 102–112 | MR | Zbl
[11] Hedenmalm H., “A factorization theorem for square area-integrable analytic functions”, J. Reine Angew. Math., 422 (1991), 45–68 | MR | Zbl
[12] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl
[13] Helton J. W., “Discrete time systems, operator models, and scattering theory”, J. Funct. Anal., 16 (1974), 15–38 | DOI | MR | Zbl
[14] Olofsson A., “Wandering subspace theorems”, Integral Equations Operator Theory, 51 (2005), 395–409 | DOI | MR | Zbl
[15] Olofsson A., An operator-valued Berezin transform and the class of $n$-hypercontractions, http://www.math.kth.se/~ao/
[16] Olofsson A., “A characteristic operator function for the class of $n$-hypercontractions”, J. Funct. Anal., 236 (2006), 517–545 | DOI | MR | Zbl
[17] Shimorin S. M., “Double power series and reproducing kernels”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 339–348 | MR | Zbl
[18] Shimorin S. M., “Wold-type decompositions and wandering subspaces for operators close to isometries”, J. Reine Angew. Math., 531 (2001), 147–189 | MR | Zbl
[19] Shimorin S. M., “On Beurling-type theorems in weighted $l^2$ and Bergman spaces”, Proc. Amer. Math. Soc., 131 (2003), 1777–1787 | DOI | MR | Zbl
[20] Sz.-Nagy B., Foiaş C., Harmonic analysis of operators on Hilbert space, North-Holland, New York, 1970 | MR