A~new measure of growth for groups and algebras
Algebra i analiz, Tome 19 (2007) no. 4, pp. 69-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a bandwidth growth is introduced, which generalizes the growth of groups and the bandwidth dimension, first discussed by J. Hannah and K. C. O'Meara for countable-dimensional algebras. The new measure of growth is based on certain infinite matrix representations and on the notion of growth of nondecreasing functions on the set of natural numbers. Two natural operations are defined on the set $\Omega^{\star}$ of growths. With respect to these operations, $\Omega^{\star}$ forms a lattice with many interesting algebraic properties; for example, $\Omega^{\star}$ is distributive and dense and has uncountable antichains. This new notion of growth is applied in order to define bandwidth growth for subgroups and subalgebras of infinite matrices and to study its properties.
Keywords: Growth of groups, growth of algebras, bandwidth growth, string.
@article{AA_2007_19_4_a2,
     author = {V. Golubovskii},
     title = {A~new measure of growth for groups and algebras},
     journal = {Algebra i analiz},
     pages = {69--91},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/}
}
TY  - JOUR
AU  - V. Golubovskii
TI  - A~new measure of growth for groups and algebras
JO  - Algebra i analiz
PY  - 2007
SP  - 69
EP  - 91
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/
LA  - ru
ID  - AA_2007_19_4_a2
ER  - 
%0 Journal Article
%A V. Golubovskii
%T A~new measure of growth for groups and algebras
%J Algebra i analiz
%D 2007
%P 69-91
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/
%G ru
%F AA_2007_19_4_a2
V. Golubovskii. A~new measure of growth for groups and algebras. Algebra i analiz, Tome 19 (2007) no. 4, pp. 69-91. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/

[1] Abrams G., Simón J. J., “Isomorphisms between infinite matrix rings: a survey”, Algebra and its Applications (Athens, OH, 1999), Contemp. Math., 259, Amer. Math. Soc., Providence, RI, 2000, 1–12 | MR | Zbl

[2] Arbarello E., De Concini C., Kac V. G., “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta Functions, Bowdoin, 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171–190 | MR

[3] Anderson F. W., Fuller K. R., Rings and categories of modules, 2nd ed., Grad. Texts in Math., 13, Springer-Verlag, New York, 1992 | MR | Zbl

[4] Burris S., Sankappanavar H. P., A course in universal algebra, Grad. Texts in Math., 78, Springer-Verlag, New York-Berlin, 1981 | MR | Zbl

[5] Camillo V., Costa-Cano F. J., Simón J. J., “Relating properties of a ring and its ring of row and column finite matrices”, J. Algebra, 244 (2001), 435–449 | DOI | MR | Zbl

[6] Cooke R. G., Infinite matrices and sequence spaces, MacMillan and Co., London, 1950 | MR | Zbl

[7] Davies R. O., Drazin M. P., Roberts M. L., “Universal properties of infinite matrices”, J. Algebra, 180 (1996), 402–411 | DOI | MR | Zbl

[8] Dixon J. D., “Most finitely generated permutation groups are free”, Bull. London Math. Soc., 22 (1990), 222–226 | DOI | MR | Zbl

[9] Ghys E., de la Harpe P. (eds.), Sur le groupe hyperboliques, Progr. in Math., 83, ed. M. Gromov, Bikhäuser, Boston, MA, 1990 | MR

[10] Goodearl K. R., Menal P., Moncasi J., “Free and residually Artinian regular rings”, J. Algebra, 156:2 (1993), 407–432 | DOI | MR | Zbl

[11] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR | Zbl

[12] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR

[13] Gromov M., “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR

[14] Gupta C. K., Holbubowski W., “Automorphisms of a free group of infinite rank” (to appear)

[15] C. K. Gupta, W. Hołubowski, “Automorphisms of a free group of infinite rank”, Algebra i analiz, 19:2 (2007), 74–85 | MR | Zbl

[16] Hahn A. J., O'Meara O. T., The classical groups and K-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | MR | Zbl

[17] Hannah J., O'Meara K. C., “A new measure of growth for countable-dimensional algebras”, Bull. Amer. Math. Soc. (N.S.), 29:2 (1993), 223–227 | DOI | MR | Zbl

[18] Hannah J., O'Meara K. C., “A new measure of growth for countable-dimensional algebras, I”, Trans. Amer. Math. Soc., 347:1 (1995), 111–136 | DOI | MR | Zbl

[19] Holbubowski W., “Free subgroups of the group of infinite unitriangular matrices”, Internat. J. Algebra Comput., 13 (2003), 81–86 | DOI | MR

[20] Holbubowski W., “Most finitely generated subgroups of infinite unitriangular matrices are free”, Bull. Austral. Math. Soc., 66 (2002), 419–423 | DOI | MR

[21] Holbubowski W., “The ubiquity of free subsemigroups of infinite triangular matrices”, Semigroup Forum, 66 (2003), 231–235 | DOI | MR

[22] Holbubowski W., “Parabolic subgroups of Vershik–Kerov's group”, Proc. Amer. Math. Soc., 130 (2002), 2579–2582 | DOI | MR

[23] Holbubowski W., “Subgroups of unitriangular group of infinite matrices” (to appear)

[24] Holbubowski W., Vavilov N. A., “Infinite general linear group” (to appear)

[25] Dzheims G. D., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[26] Kac V. G., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR

[27] Kovalchuk E. A., “Gruppy perestanovok ogranichennogo rosta”, Problemy teorii grupp i gomologicheskoi algebry, Yaroslav. gos. un-t, Yaroslavl, 1988, 18–28 | MR

[28] Krause G. R., Lenagan T. H., Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. in Math., 22, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[29] Leonov Yu. G., “Representation of finitely approximative 2-groups by infinite unitriangular matrices over a two element field” (to appear)

[30] Magurn B. A., An algebraic introduction to $K$-theory, Encyclopedia Math. Appl., 87, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[31] Milnor J., “Problem 5603”, Amer. Math. Monthly, 75 (1968), 685–686 | DOI | MR

[32] Oliinyk A., Suschanskii V. I., “Svobodnaya gruppa beskonechnykh unitreugolnykh matrits”, Matem. zametki, 67:3 (2000), 382–386 | MR | Zbl

[33] Olijnyk A., Sushchansky V. I., “Representations of free products by infinite unitriangular matrices over finite field”, Internat. J. Algebra Comput., 14 (2004), 741–749 | DOI | MR | Zbl

[34] O'Meara K. C., “A new measure of growth for countable-dimensional algebras, II”, J. Algebra, 172:1 (1995), 214–240 | DOI | MR

[35] Sierpiński W., “Sur une décomposition d'ensembles”, Monatsh. Math. Phys., 35 (1928), 239–242 | DOI | MR | Zbl

[36] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[37] Tjukavkin D. V., “Rings all of whose one-sided ideals are generated by idempotents”, Comm. Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl

[38] Vershik A. M., “Asymptotic aspects of the representation theory of symmetric groups”, Selecta Math. Soviet., 11:2 (1992), 159–179 | MR | Zbl

[39] Vershik A. M., Kerov S. V., “Ob odnoi beskonechnomernoi gruppe nad konechnym polem”, Funkts. analiz i ego pril., 32:3 (1998), 3–10 | MR | Zbl