Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_4_a2, author = {V. Golubovskii}, title = {A~new measure of growth for groups and algebras}, journal = {Algebra i analiz}, pages = {69--91}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/} }
V. Golubovskii. A~new measure of growth for groups and algebras. Algebra i analiz, Tome 19 (2007) no. 4, pp. 69-91. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a2/
[1] Abrams G., Simón J. J., “Isomorphisms between infinite matrix rings: a survey”, Algebra and its Applications (Athens, OH, 1999), Contemp. Math., 259, Amer. Math. Soc., Providence, RI, 2000, 1–12 | MR | Zbl
[2] Arbarello E., De Concini C., Kac V. G., “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta Functions, Bowdoin, 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171–190 | MR
[3] Anderson F. W., Fuller K. R., Rings and categories of modules, 2nd ed., Grad. Texts in Math., 13, Springer-Verlag, New York, 1992 | MR | Zbl
[4] Burris S., Sankappanavar H. P., A course in universal algebra, Grad. Texts in Math., 78, Springer-Verlag, New York-Berlin, 1981 | MR | Zbl
[5] Camillo V., Costa-Cano F. J., Simón J. J., “Relating properties of a ring and its ring of row and column finite matrices”, J. Algebra, 244 (2001), 435–449 | DOI | MR | Zbl
[6] Cooke R. G., Infinite matrices and sequence spaces, MacMillan and Co., London, 1950 | MR | Zbl
[7] Davies R. O., Drazin M. P., Roberts M. L., “Universal properties of infinite matrices”, J. Algebra, 180 (1996), 402–411 | DOI | MR | Zbl
[8] Dixon J. D., “Most finitely generated permutation groups are free”, Bull. London Math. Soc., 22 (1990), 222–226 | DOI | MR | Zbl
[9] Ghys E., de la Harpe P. (eds.), Sur le groupe hyperboliques, Progr. in Math., 83, ed. M. Gromov, Bikhäuser, Boston, MA, 1990 | MR
[10] Goodearl K. R., Menal P., Moncasi J., “Free and residually Artinian regular rings”, J. Algebra, 156:2 (1993), 407–432 | DOI | MR | Zbl
[11] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR | Zbl
[12] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR
[13] Gromov M., “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR
[14] Gupta C. K., Holbubowski W., “Automorphisms of a free group of infinite rank” (to appear)
[15] C. K. Gupta, W. Hołubowski, “Automorphisms of a free group of infinite rank”, Algebra i analiz, 19:2 (2007), 74–85 | MR | Zbl
[16] Hahn A. J., O'Meara O. T., The classical groups and K-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | MR | Zbl
[17] Hannah J., O'Meara K. C., “A new measure of growth for countable-dimensional algebras”, Bull. Amer. Math. Soc. (N.S.), 29:2 (1993), 223–227 | DOI | MR | Zbl
[18] Hannah J., O'Meara K. C., “A new measure of growth for countable-dimensional algebras, I”, Trans. Amer. Math. Soc., 347:1 (1995), 111–136 | DOI | MR | Zbl
[19] Holbubowski W., “Free subgroups of the group of infinite unitriangular matrices”, Internat. J. Algebra Comput., 13 (2003), 81–86 | DOI | MR
[20] Holbubowski W., “Most finitely generated subgroups of infinite unitriangular matrices are free”, Bull. Austral. Math. Soc., 66 (2002), 419–423 | DOI | MR
[21] Holbubowski W., “The ubiquity of free subsemigroups of infinite triangular matrices”, Semigroup Forum, 66 (2003), 231–235 | DOI | MR
[22] Holbubowski W., “Parabolic subgroups of Vershik–Kerov's group”, Proc. Amer. Math. Soc., 130 (2002), 2579–2582 | DOI | MR
[23] Holbubowski W., “Subgroups of unitriangular group of infinite matrices” (to appear)
[24] Holbubowski W., Vavilov N. A., “Infinite general linear group” (to appear)
[25] Dzheims G. D., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR
[26] Kac V. G., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR
[27] Kovalchuk E. A., “Gruppy perestanovok ogranichennogo rosta”, Problemy teorii grupp i gomologicheskoi algebry, Yaroslav. gos. un-t, Yaroslavl, 1988, 18–28 | MR
[28] Krause G. R., Lenagan T. H., Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. in Math., 22, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[29] Leonov Yu. G., “Representation of finitely approximative 2-groups by infinite unitriangular matrices over a two element field” (to appear)
[30] Magurn B. A., An algebraic introduction to $K$-theory, Encyclopedia Math. Appl., 87, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[31] Milnor J., “Problem 5603”, Amer. Math. Monthly, 75 (1968), 685–686 | DOI | MR
[32] Oliinyk A., Suschanskii V. I., “Svobodnaya gruppa beskonechnykh unitreugolnykh matrits”, Matem. zametki, 67:3 (2000), 382–386 | MR | Zbl
[33] Olijnyk A., Sushchansky V. I., “Representations of free products by infinite unitriangular matrices over finite field”, Internat. J. Algebra Comput., 14 (2004), 741–749 | DOI | MR | Zbl
[34] O'Meara K. C., “A new measure of growth for countable-dimensional algebras, II”, J. Algebra, 172:1 (1995), 214–240 | DOI | MR
[35] Sierpiński W., “Sur une décomposition d'ensembles”, Monatsh. Math. Phys., 35 (1928), 239–242 | DOI | MR | Zbl
[36] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl
[37] Tjukavkin D. V., “Rings all of whose one-sided ideals are generated by idempotents”, Comm. Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl
[38] Vershik A. M., “Asymptotic aspects of the representation theory of symmetric groups”, Selecta Math. Soviet., 11:2 (1992), 159–179 | MR | Zbl
[39] Vershik A. M., Kerov S. V., “Ob odnoi beskonechnomernoi gruppe nad konechnym polem”, Funkts. analiz i ego pril., 32:3 (1998), 3–10 | MR | Zbl